【摘 要】
:
在企业运营过程中,领导者一直在探寻一种低成本并且高效率的员工管理方式。领导幽默作为一种能够迅速与员工拉近心理距离、营造良好工作氛围的领导方式,很好地实现了员工管理的目标。自20世纪80年代起,西方就已经关注到了领导幽默在管理中所起的重要作用,21世纪以来,逐渐得到中国学者的广泛关注与研究,并被倡导应用于当代企业的管理过程中。本研究在广泛阅读国内外文献的基础上,分析领导幽默的产生和发展背景,提出基本
论文部分内容阅读
在企业运营过程中,领导者一直在探寻一种低成本并且高效率的员工管理方式。领导幽默作为一种能够迅速与员工拉近心理距离、营造良好工作氛围的领导方式,很好地实现了员工管理的目标。自20世纪80年代起,西方就已经关注到了领导幽默在管理中所起的重要作用,21世纪以来,逐渐得到中国学者的广泛关注与研究,并被倡导应用于当代企业的管理过程中。本研究在广泛阅读国内外文献的基础上,分析领导幽默的产生和发展背景,提出基本的研究问题和假设。组织公民行为是员工对组织的忠诚度和投入度的考量因素,对员工和组织的长期发展都起到至关重要的作用。研究以领导幽默为切入点,探索领导幽默与组织公民行为之间的具体作用过程;引入社会认同理论对领导幽默与组织公民行为之间的关系进行检验和论证,明确员工的不同权力距离对组织认同的边界效应。研究过程中,通过问卷调查法收集302份可用问卷,并使用SPSS22.0进行数据的实证分析,从而获得可信的研究结果。本研究得到验证的假设有:(1)领导幽默显著影响组织公民行为:亲和型幽默正向影响员工的组织公民行为,攻击型幽默负向影响员工的组织公民行为;(2)组织认同能够中介领导幽默与组织公民行为之间的关系;(3)权力距离负向影响攻击型幽默对组织认同的关系。通过以上研究,不仅为国内的领导幽默的相关研究提供了理论支撑,也为领导者如何管理员工给出了具有实践意义的建议,有利于强化员工的组织公民行为。
其他文献
设为有限群,第一Zassenhaus猜想是问有限群整群环ZG中的挠单位与的元素在有理群代数QG中是否共轭?本学位论文在前人研究的基础上对该问题进行了继续探讨.论文首先总结了有限群整群环的一些基本结果,并给出了有限群整群环挠单位的一些基本性质.其次,利用Hertweck-Luthar-Passi方法,通过计算对称群S5与循环群C3直积整群环挠单位的偏增广,证明了对称群S5与循环群C3的直积满足第一Z
在水动力学研究领域中,将水温波动考虑在内的浅水流体,可以通过耦合了温度梯度的浅水波方程(也被称为Ripa模型)来刻画。该模型在水动力学领域中具有广泛应用。传统数值方法通常无法保持定常解,容易导致非物理的伪震荡。此外,仅仅依靠网格加细策略,只会减小震荡的幅度,无法完全消除伪震荡,且增加了计算成本。特别地,在离散状态下能够精确保持定常解的数值方法,我们称之为well-balanced方法。在本文中,针
Heisenberg群是一种非交换群,在Heisenberg群上研究调和分析问题是欧氏空间上调和分析问题的延伸,Heisenberg群在许多学科都有广泛的应用,比如量子力学,偏微分方程,以及数论等.许多学者研究Heisenberg群上一些相关算子,比如Schr(?)dinger算子,Hardy型算子.本文研究常见的Schr(?)dinger算子.我们令£=-ΔHn+V为Heisenberg群Hn上
本文首先回忆了关于李代数、单李代数及根空间分解的相关知识,介绍了导子和2-局部导子的基本概念.主要研究了Virasoro代数、广义的Loop-Witt代数及对复数域上单李代数的Loop代数进行一维导子扩张得到的无限维完备李代数(?)上2-局部导子是否为导子的问题.根据其导子的具体形式,证明并得到Virasoro代数上的2-局部导子都是导子.定义了2-局部齐次导子,并进一步证明了广义的Loop-Wi
本文的主体内容属于顶点代数及其相关领域.首先,我们探讨态场-对应的若干基本性质,在此基础上,介绍了共形超代数的概念,并研究它与态场-对应之间的密切关系.然后,我们推广了与之相关的Laurent-幂级数局部性的概念,并给出它的一些具体实例.最后,作为本文的主要结果,我们用张量积的方法构造了具有普遍意义的Loop-态场-对应,并研究了它的局部性质.本文内容分为四个部分:第一章主要给出了本论文所涉及内容
在多复变中,全纯等价问题是非常重要的研究课题之一,而有界拟凸区域之间的双全纯映射的刚性问题就是其中的一个经典研究分支.本文主要研究等维的拟凸区域之间全纯映射的刚性问题.具体来说,我们主要在等维的Hartogs区域上对此刚性问题进行研究.首先,我们探讨了一类特殊的Hartogs区域称之为华域(以华罗庚先生命名)的双全纯等价性问题,其作为Cartan-Hartogs区域的推广,华域是底空间为有界对称域
张量互补问题是优化领域中一类重要的研究课题,在博弈论、超图聚类以及相关领域有着广泛的应用前景。此外,考虑到实际生活中往往涉及到许多不确定的因素,人们开始研究带有随机变量的随机张量互补问题。本文主要研究求解随机张量互补问题的投影算法。论文的具体内容如下:(1)介绍了张量的基本定义和运算,介绍了张量互补问题和随机张量互补问题的基本形式,并简述了相关理论和算法的发展概况。(2)研究了离散型随机张量互补问
溶解性有机物(DOM)具有大量的含碳、氮、氧等元素的官能团,在净水过程中,DOM会与含氯消毒剂发生反应,生成三卤甲烷(THMs)、卤乙酸(HAAs)等具有致癌、致畸、致突变效应的消毒副产物(DBPs)。因此,探明水体中DOM的分布特征和来源,并考察其对DBPs生成的影响,对于保护生态环境和保障居民饮水安全都具有重要意义。传统的UV、13C NMR、FT-IR等表征技术需要对样品进行前处理且只能分析
非线性问题是最优化研究中的一个重要组成部分,在管理学、信息科学、经济学、农业科学和工业工程等领域有诸多应用。本文我们对带约束的非线性优化问题进行研究,对两种约束优化问题提出了非凸可分内点信赖域算法和仿射内点信赖域算法,主要包含以下内容:首先介绍了非线性约束问题的一些基本情况,包括非线性约束问题的概念及研究方法,另外对内点信赖域优化算法进行了介绍,并给出了本文所要研究的内容。可分离优化问题在图像处理
材料的结构与组分进行合理的设计对于优化材料的性能具有重要意义。由于电子通讯设备的普及,电磁干扰问题也愈发严重,高性能电磁波吸收材料的制备已经成为关键。然而,传统电磁波吸收材料往往存在密度大、厚度厚、带宽窄以及吸收强度低等问题,因此新型高性能“薄、轻、宽、强”新型吸波材料的设计以及制备成为重要的研究方向。多孔碳材料具有质量轻、密度小、导电性高以及介电可调等优点被认为是制备高性能电磁波吸收材料的理想材