基于频率域的流体形态保持方法

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:cuisong521
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于物理的流体模拟是计算机动画领域的重要组成部分。但由于流体自身运动的复杂性,进行高质量的流体模拟需要消耗大量的资源与时间。随着人们对流体动画质量的追求越来越高,动画师需要在越来越高精度的网格中进行流体模拟。但动画师在高精度网格中模拟所得到的流体形态往往与期待的形态不符,需要进行反复的参数调整才能得到理想的流体形态。此外,由于数值误差的存在,在低精度的网格中模拟得到的流体与高精度网格中模拟得到的流体之间存在巨大形态差异。保持流体在低精度网格和高精度网格的形态一致性有助于动画师快速地得到理想的流体效果。本文从现有的流体模拟框架出发,分析流体模拟中对流项求解所导致的数值耗散的原因,并以此为理论依据,本文提出了“形态补强”和“形态重构”两种方法以保证流体模拟在不同精度网格下的形态一致性。在“形态补强”方法中,本文针对流体模拟中对流项与低通滤波器的等价性,提出使用高通滤波器找回高频信号的方法来减少流体模拟中的数值耗散。同时结合信号领域中傅里叶变换的相关知识来加速流体场与滤波核的卷积速度,最终达到高-低精度流体模拟形态的一致性。在“形态重构”方法中,本文推导了流体模拟的对流步在高精度网格与低精度网格情况下流体场在频率域上的关系,并以此为理论基础,构建了基于频率域的高精度网格与低精度网格之间的重构滤波器。并将重构滤波器与一般流体模拟框架结合,应用到流体模拟中,使得在不同精度的网格中模拟所得到流体形态相似。本文的主要创新点为:(1)从频率域角度出发,分析了流体模拟在对流步中导致流体形态不一致的原因,提出了流体形态补强和流体形态重构这两种解决方案;(2)使用滤波器的概念,对基本的流体模拟框架进行了改进;(3)形态补强和形态重构这两种方法能够使得在不同精度网格中模拟的流体保持形态上的相对一致性,有利于动画师快速获得理想的流体效果。
其他文献
Bell态测量是量子信息的重要组成部分,如量子隐形传态和量子密集编码等。之前的研究表明,基于线性光学操作,如分束器、半波片等,最多只能识别出50%的Bell态。通过引入辅助光
随着工业4.0的提出,传统制造业面临着向智能工厂方向转型的历史性路口,而一个完善的车间智能物流系统是制造业实现智能工厂的关键一步。本文对车间智能物流技术进行研究,设计
超材料是由周期性的亚波长结构组成的人工介质,其具有的独特、奇异电磁特性被广泛应用于控制光的传播。2003和2006年,美国《Science》杂志两次将超材料(也称左手材料)评为年度
基于空芯光子晶体光纤(Hollow Core Photonic Crystal Fiber,HC-PCF)的全光纤光谱吸收气体传感器,具有体积小、抗干扰能力强、稳定性好等优点,近年来受到学者的青睐。然而,该
重大科技工程是关系国计民生的复杂重大决策问题,涉及多方利益,其决策的成败与否对于国家、社会以及个体具有重要影响。因此,为提高决策的可靠性和科学性,降低决策过程中的风险,需要进行多阶段、多主体、多层次决策过程的交互反馈研究,充分共享决策信息和知识,提高决策质量和效果。尤其互联网环境为重大科技工程交互决策提供新的信息交互平台,进一步促进了重大科技工程交互决策共识的达成。本文首先对重大科技工程概念进行界
研究背景:脓毒症(Sepsis)是一种临床上由机体对感染的异常反应而导致的危及生命的器官功能障碍,是严重烧、创伤及外科大手术后常见的并发症。最新数据显示,全球每年超过1900万人罹患脓毒症,其中死亡人数超过530万,是重症监护室(intensive care unit,ICU)患者的首位死亡原因。前期我们团队已完成了关于中国脓毒症流行病学现状的前瞻性调查,结果显示我国重症脓毒症的发病率为8.68%
地表发射率是地表的固有属性,是物体在温度T、波长λ处的辐射出射度与黑体辐射出射度之比。微波地表发射率作为同化各种卫星微波辐射资料的重要参数,精准的数值会提升星载微
近年来,轮式移动机器人因其结构简单、易于控制等优点被大量应用在工业、农业、国防和空间探测等领域。在轮式移动机器人的众多研究中,最重要、最基础的一项是对机器人轨迹跟
视频跟踪在多方面都有着非常重要的用途,例如智能交通、虚拟现实、精确制导等。如今,视频的多样性导致各种各样问题接踵而来,在跟踪过程中会发生部分遮挡、光照强度变化、背景复杂等情况,这无疑加大了跟踪算法的难度。所以本文主要针对部分遮挡和背景复杂这两个问题进行了研究和分析,通过在线检测算法改进核相关滤波再和粒子滤波预测结果进行融合,当遇到部分遮挡和背景复杂情况发生时,能够较好跟踪目标。本文主要工作如下:首
在许多实际的动态系统中,硬件上的物理输入饱和决定了控制信号的幅度总是受到限制。饱和对于控制系统的执行器来说是一种潜在性的问题,它经常严重地限制系统的性能,导致控制