若干类昆虫介体传播植物病的模型研究

来源 :山西师范大学 | 被引量 : 0次 | 上传用户:okzhi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究了昆虫介体传播植物病的动力学系统,全文分为三章。   第一章,绪论,介绍了本文的研究背景和一些预备知识。   第二章,主要研究依赖昆虫介体传播植物病毒病害的生物控制策略。本章扩展了生物控制植物病的一般模型,在原有模型的基础上考虑了介体的垂直传毒和植物间的二次传染的情况,得到了新的病毒的基本再生数、病毒的入侵阈值和拟寄生物的入侵阈值.同时给出了脉冲输入拟寄生物时的无病周期解存在的条件,通过定性分析可知,拟寄生物对昆虫介体传播植物病的预防和控制有非常重要的作用。   第三章,主要通过具有非线性发生率的昆虫介体传播植物病的模型来研究昆虫介体对植物病传播的影响。首先,利用第二代矩阵法得到了基本再生数R0.其次,得到了无病平衡点和地方病平衡点。最后,我们通过李雅普诺夫函数和加性复合矩阵理论发现基本再生数R0是一个临界阈值.当R0≤1时,无病平衡点是全局渐近稳定的,这意味着植物病将最终灭绝。当R0>1时,地方病平衡点是全局渐近稳定的,这意味着植物病将持续。
其他文献
解析函数空间上的算子理论是研宄函数论中的经典问题的重要工具.目前,国内外很多算子理论界的学者对这个课题也很感兴趣,并逐渐地形成了一整套的理论体系^在本文中,我是利用泛函
本文以模糊集值信息系统为研究对象,以模糊集理论和粗糙集理论为工具,研究了基于α-相容关系的模糊集值信息系统的知识约简和规则提取.集值信息系统是一般信息系统的推广,它将属
在“两会”精神指引下,各级政府一定会大有作为十届全国人大二次会议于14日结束。时刻关注“两会”进程的广大干部群众积极评价“三个代表”重要思想入宪、5年内取消农业税、
本文首先从Hesse流形的定义出发,研究了Hesse结构,Hesse截面曲率的性质,推出了Hesse流形的全测地浸入子流形上的Ricci曲率和数量曲率之间的关系.然后,采用自己的证法对Hesse流形
本文给出了一个使得多元马尔可夫模型存在唯一的联合概率平稳分布的条件,且得到了联合概率平稳分布的一个扰动界.                                  
带延迟项的Volterra型积分微分方程出现在许多物理及生物领域的数学模型中,例如流体力学,记忆性材料的热传导问题,石油开采,核反应堆问题,其重要的研究意义使得该课题一直备受学者
最近几年关于修正共轭梯度法的研究成果很多.已提出了多种形式的修正共轭梯度法,这些算法的一些共同优点是能产生不依赖于线性搜索的充分下降方向.在一定条件下,这些算法用于求
现代物流业的快速发展,为了降低企业物流成本和提高运作效率,从而提高客户满意度和企业自身竞争力,作为智能交通系统中重要内容的车辆路径优化问题得到了学者和物流企业的高度关
传染病动力学模型是生物数学模型的一个重要组成部分,近年来受到国内外许多学者的广泛关注,本文主要在前人工作的基础上,利用时滞微分方程的相关理论和方法建立了两类含有时滞的
本文应用无套利定价原理分别研究了几何布朗运动假设和跳跃扩散模型假设下的巨灾债券定价问题,其中纯跳跃过程的跳跃幅度服从对数正态分布,以及应用保险精算定价原理研究巨灾债