多模型自适应故障诊断及其在高速列车上的应用

来源 :华东交通大学 | 被引量 : 0次 | 上传用户:dyoyo90
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科学技术的发展,自动控制系统的规模越来越大,复杂程度越来越高,组成系统的电子元器件也越来越多。然而控制系统可能因为元器件老化、外界灾害、人为损害或误操作等问题发生故障,导致整个系统的安全性和可靠性降低,甚至造成不可挽回的损失或灾难。为了提高系统的安全性和可靠性,本文以多变量系统为研究对象,设计了多模型自适应执行器故障诊断和调节策略,并将其应用于高速列车牵引电机故障诊断与调节中,使其在存在未知牵引电机故障的情况下仍能实现对给定速度曲线的渐近跟踪,保障了高速列车的安全可靠运行。具体工作内容包括以下两个方面:针对一般多变量系统,设计了基于多模型自适应方法的多变量系统执行器故障诊断与调节策略。首先,通过分析执行器常见故障,建立故障模式集,得到其在每种故障模式下的参数化模型;再基于每种故障模式下的参数化模型设计自适应估计器,并基于估计误差设计性能损失函数进行多变量系统执行器自适应故障诊断;最后根据诊断出的故障模式和大小等信息设计自适应故障调节控制器,保证系统稳定,实现对给定的预期输出渐近跟踪。仿真结果表明,本文设计的多变量系统故障自适应诊断与调节策略能有效地实现对未知执行器故障的诊断和补偿。以遭受未知牵引电机故障的高速列车为研究对象,研究其自适应故障诊断和调节策略。首先,建立考虑牵引电机特性的高速列车纵向动力学模型,再通过对牵引电机常见的故障进行分析,建立故障模式集,得到高速列车在每种牵引电机故障模式下的参数化模型。接着,针对每种参数化模型建立这种故障模式下的故障估计器,根据估计误差设计性能损失函数进行高速列车牵引电机自适应故障诊断。最后根据诊断出的故障模式和大小设计自适应故障调节控制器,保证高速列车系统稳定和对给定速度曲线的渐近跟踪。仿真结果表明,本文设计的自适应故障诊断与调节策略能有效地实现对高速列车未知牵引故障的诊断和补偿,保障高速列车的安全可靠运行。
其他文献
随着工业自动化的发展,工业机器人凭借工作效率高、焊接质量好、可重复性高的优点,在机械制造行业得到了越来越广泛的应用,特别是在汽车行业中,白车身的点焊、喷涂等生产任务基本由工业机器人完成。在实际生产中,白车身结构复杂,焊点数量多,焊接任务重。在进行生产线设计时,为提高工作效率,常常会将两台或两台以上的机器人放置在同一工位上,将白车身上的焊点分配至多台机器人,以期减少整个工位的工作时间。但是对于多机器
AT牵引供电系统被广泛用于我国高速铁路供电,牵引网是牵引供电系统的核心组成部分,牵引网故障若故障不能得到及时有效的处理,故障范围将扩大造成严重影响。准确、快速的识别故障类型并确定故障位置有利于铁路工作人员对牵引网的修复工作,能够缩小故障发生时间和减少影响线路。论文提出了一种基于深度学习方法的AT牵引网短路故障的快速识别与测距方案,针对深度学习方法需要数据较多,而AT牵引供电系统输电线路故障数据较少
随着人工智能技术的飞速发展,智能机器人的使用领域愈来愈广泛。SLAM(Simultaneous Localization and Mapping,同时定位与地图构建)技术作为一项协助智能机器人实现自主定位、导航的重要方法,受到了许多研究人员的重视。“视觉SLAM”是指使用视觉传感器来获取外界环境信息的SLAM技术。目前,大多数的视觉SLAM算法在静态环境中使用效果较好,但是如果场景中存在动态的物体
基于视觉的同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)是机器人自主移动的核心功能,主要解决的是机器人中“我在哪?”、“我的周围是什么?”的问题,是机器人实现自主智能化的关键。近些年,基于深度学习的目标检测和语义分割的广泛研究与应用,获取非常精准的语义信息已经成为可能。将环境中的物体的语义信息结合到SLAM系统中,是当前SLAM的热门研究
近年来随着人工智能技术的不断突破和普及,已逐渐应用到各种工业生产过程中。稀土元素作为一种战略资源,渐渐成为一些高新技术产业领域不可替代的角色,对国民经济和社会发展也是举足轻重。为了使稀土资源优势转化为产业优势,对稀土行业就提出了更高的要求。此外,稀土工业过程大时延、非线性、时变、强耦合、多变量等特点使得传统的控制理论和信息处理技术已无法满足稀土行业对先进自动化技术的迫切需求。稀土萃取分离过程中,组
胃肿瘤细胞作为典型的医学图像,是一种小样本数据集,并且胃肿瘤细胞图像复杂、信息冗余,若直接将原始小样本数据带入深度学习进行训练,会出现过拟合、梯度消失等问题。生成对抗网络的出现为解决小样本问题提供了重要的研究方向,即数据增强,通过扩充数据集来解决小样本问题;元学习本身也是用来解决小样本问题,所以研究这两种方法能更好地实现胃肿瘤细胞图像的分类识别。本文的研究内容主要有以下几点:首先,原始的生成对抗网
在这个信息技术不断进步的时代,人们对于图像的分辨率要求越来越高。超分辨率重建作为一种通过软件算法来提高图像分辨率的技术,具有成本低、效果好等优点,在医学成像、卫星遥感和安防监控等众多领域都有重要的作用。随着深度学习的发展,卷积神经网络被引入到超分辨率重建领域,因其复杂数据学习和表示能力强,极大地提高了图像的重建质量。为此,本文提出了两种基于卷积神经网络的超分辨率重建算法,主要研究内容如下:(1)针
高度智能化的机械臂抓取技术一直是机器人研发的重要目标之一。机械臂对于随机移动物体的抓取方法是实现工业生产线由自动化转向智能化所必要的重要功能。本文针对机械臂抓取移动物体的问题,研究了两方面问题。第一,传统基于预测机制的移动物体抓取方法预测精度较差,本文提出了一种结合长短时记忆网络模型(LSTM)和全连接网络结合的预测网络用于物体的移动轨迹预测,提高了轨迹预测准确性。第二,基于预测机制的移动物体抓取
目前我国各行各业快速发展,交通运输业也在以蒸蒸日上的态势发生着巨大变化。高速铁路的建设对于地区的经济发展也带来了越来越好的促进作用,得到了越来越广的支持。在保证列车安全运行的前提下,如何更加智能、方便的提高运行效率和性能成为关注的重点,因此列车的自动驾驶控制已成为高速列车领域的重要研究内容。在列车自动驾驶技术快速发展环境下,本文研究跟踪性能更好的速度跟踪控制方法。传统列车模型未考虑到非线性因素对列
移动机器人作为智能机器人的重要分支之一,关于其路径规划的研究,一直被国内外学者作为研究的热点。近年来,随着人工智能与智能制造技术的飞速发展,移动机器人与各种智能算法结合,应用领域不断扩展,但也同时面临着更多的挑战。目前,大多数学者都是针对已知环境下的路径规划算法进行研究,移动机器人缺乏自主学习性,当面临未知环境时很难找到一条抵达终点且无碰撞的路径,并且大部分都是输出离散动作,不符合场景应用。因此,