不含kite或三角形的距离正则图

来源 :河北师范大学 | 被引量 : 0次 | 上传用户:to_3000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究了两类距离正则图.(1)不含长为2的kite的距离正则图,用代数方法研究了当Γ的特征值θ=-k/1+α1时,θ的重数mult(θ)=α1+1的等价条件.(2)不含三角形的距离正则图,用组合方法及圈搜索技术得到图的一些交叉数的关系,主要结论如下: ·设Γ=(X,E)是直径d≥3,价k≥3的距离正则图.假设Γ不含长为2的kite,且α1≠0.令θ是Γ的非平凡特征值,E=|X|-1d∑i=0θi*Ai是关于θ的本原幂等元,则下面(1)-(3)等价: (1)θ=-k/α1+1. (2)对所有满足()(x,y)=1的x,y,有∑z∈Xz∈A(x,y)Ez=-(Ex+Ey)。 (3)存在x,y∈X,()(x,y)=1,使∑ Ez∈span{Ex,Ey}。 ·设Γ=(X,E)是直径d≥3,价k≥3的距离正则图.假设Γ不含长为2的kite且a1≠0.令θ是Γ的非平凡特征值,E=|X]-1D∑i=0θi*Ai是关于θ的本原幂等元.若上面定理的(1)-(3)成立,则下面(1)-(3)等价: (1) mult(θ)=ai+1. (2)对所有满足()(x,y)=1的x,y,是EV的一组基. (3)存在x,y∈X且()(x,y)=1,使 ·假设Γ=(X,E)是直径d≥5,价k≥4的距离正则图,且a1=0.对i∈{2,3,…,d-3},γi存在,但γd-2不存在,若c2=1,那么γi=1,其中i∈{2,3,…,d-3},并且bd-3≥2. ·设Γ=(X,E)足直径d≥5,价k≥4的距离正则图,并且a1=0.对任意的i∈{2,3,…,d-3},γi存在,但,γd-2不存在.如果c2=1且ad-4=1,那么ad-3=1≤ad-2,其中d≡2(mod3),并且Γ的交叉阵列是: ·假设Γ=(X,E)是直径d≥5,价k≥4的距离正则图,且a1=0.对i∈{2,3,…,d-3},γi存在,但γd-2不存在,如果γd-1存在且c2=1,那么γd-1=0与bd-2=1成立. ·设Γ=(X,E)是直径d≥5,价k≥4的距离正则图,并且a1=0,c2=1.对任意的i∈{2,3,…,d-3},γi存在,但γd-2不存在,如果Γ是距离可迁图或对称距离正则图,则有d=5或6.
其他文献
随着大数据时代的来临,我们实际生活中处理的数据越来越多样化,很多科学实验中得到数据的都是函数型数据,这也是近年来学者们探索的热点之一。对于函数型数据的研究与传统的数据
近年来,在数学、物理、化学、生物学、医学、经济学、工程学和控制论等许多科学领域出现了各种各样的非线性问题,在解决这些非线性问题的过程中,逐渐产生了现代分析数学中非常重
张素在《保密工作》2006年第3期上撰文说, 一段时间,为数不少的人通过互联网表示,他们收集整理了联想、海尔等数百家国内知名企业的内部管理文档、产品调研报告,企业内部控制
本文包括两部分内容.   首先,在有界光滑区域-Ω(∪)RN上,应用正则化方法和上下解方法,考虑奇异抛物型方程的初边值问题的解的存在性、唯一性及其估计.   当b,h和ψ满足适
什么是CPI:CPI是居民消费价格指数(consumer price index)的简称。居民消费价格指数,是一个反映居民家庭一般所购买的消费商品和服务价格水平变动情况的宏观经济指标。它是度
Three compounds modeled on the lignite structure were chosen for experimental degradation by different fungi strains. Culture conditions and extracellular enzym
所谓“互动式教学模式”,即指在教学过程中,教师和学生双方建构起一种双向动态的交流互动。在这样的交流活动中,教育活动不再是教师对学生进行单方面知识灌输,而是一个参与双方在
陶行知先生提倡教学合一,并给出了三点理由:一、先生的责任不在教,而在教学,而在教学生学;二、教的法子必须根据于学n的法子;三、先生不但要拿他教的法子和学生的法子联络,并须和他
子矩阵约束问题就是对给定的矩阵A0,在某种约束条件下构造矩阵A,使得A以Ao为子矩阵,若记子矩阵约束问题的解集合为W(A0),则子矩阵约束下矩阵反问题就是指:对给定的矩阵X,B,求A∈W(A0),使
算子逼近是国内外逼近论界多年来研究的热点问题之一,它主要研究线性算子列的收敛性质和收敛速度等有关问题.众所周知,Bernstein算子,Szasz算子及它们的Kantorovich变形算子,Durr