【摘 要】
:
针对航天精密铸锻件零件加工过程中存在的划线找正困难、对作业人员经验要求苛刻、加工耗时过长造成的严重制约产品生产周期和质量、影响产品定型生产等现实问题,本文提出了面向复杂多结构件的机器人自动划线技术。通过采集复杂零件数据及并进行数字化余量分配,驱动机器人运动实现自动精确划线作业,大幅度缩短人工测量和手工分析、调整的划线时间,提高加工效率,并有效保证划线精度。论文的主要研究工作及成果如下:1.研究点云
论文部分内容阅读
针对航天精密铸锻件零件加工过程中存在的划线找正困难、对作业人员经验要求苛刻、加工耗时过长造成的严重制约产品生产周期和质量、影响产品定型生产等现实问题,本文提出了面向复杂多结构件的机器人自动划线技术。通过采集复杂零件数据及并进行数字化余量分配,驱动机器人运动实现自动精确划线作业,大幅度缩短人工测量和手工分析、调整的划线时间,提高加工效率,并有效保证划线精度。论文的主要研究工作及成果如下:1.研究点云数据获取及预处理技术,提出了基于三角面片的等距采样离散技术,采用非接触式获取数据,通过离散等预处理解决了接触式测量复杂薄壁件数据时产生的零件变形及测量区域受限导致的测量数据不完整等问题。2.结合实际研究了基于数模精确配准的加工余量优化技术,通过对加工基准进行分析,提出了面向余量均匀化的数模配准微调技术,实现了加工余量的的再分配,解决机加过程中因余量分配不合理、定位基准不易确定造成的加工超差等问题。3.开展了基于余量优化结果的机器人自动划线控制技术研究,通过对工件的划线轨迹再优化并编制机器人运动控制程序,借助机器人划线执行装置实现复杂多结构件基准线的规划,有效地缩短了工作周期,提高了加工效率。4.结合MFC、Open GL图形库、动态链接库等技术,自主设计开发了面向机器人划线的余量分析软件及机器人运动控制程序,并进行了加工实验,验证了本文所研究技术的合理性和实用性。
其他文献
随着摄像头的不断更新换代,图像的分辨率越来越高,所占空间也越来越大,为图像的存储和传输带来了巨大的挑战。除了考虑增加存储空间、升级带宽外,还应该从图像本身出发,研究图像压缩技术,在保证图像质量的情况下,尽量减少存储空间。基于深度学习的图像压缩方法近几年发展迅速,其中基于卷积神经网络的方法已经成为主流的压缩方法。该类方法主要分为四部分:编码器、量化器、熵编码器以及解码器。编码器采用卷积层提取图像特征
近年来,如何解决标记多义性问题已成为机器学习和数据挖掘领域的一个热门研究点。在传统的机器学习框架中,比较成熟的标记多义性学习范式是单标记学习和多标记学习。前者假设一个示例仅仅只有一个标记,后者认为一个示例可以和多个标记相关。因此,相比于单标记学习,多标记学习可以解决更多的标记多义性问题。然而,无论是单标记学习还是多标记学习都只能解决“哪些标记与示例相关”的问题,无法回答“每个标记是怎样对示例进行描
车联网是物联网在智能交通领域的运用,也是智能交通系统的重要组成部分。车联网本质上是一个庞大的无线传感器网络,其中路边节点与车辆之间能够进行无线通信,从而实时感知车辆位置,并与车辆进行数据交互。为了保证车辆与网络的实时通信,车联网需要具备高精度目标追踪能力。然而,当前主要追踪方法依靠的是全球定位系统等传统技术,不具备足够的追踪精度,且易受到天气与建筑因素影响。本文基于车联网中目标追踪场景,设计了三种
随着社会的不断发展和进步,人类集体性的活动日益频繁,聚集的场所也越来越多,准确估计人群密度和数量可以为预判人群活动提供非常有效的信息,有利于保障社会公共安全。人群计数已成为当下计算机视觉领域方面的一项研究热点。早期的人群计数方法主要以检测和回归为基础,近年来,深度学习凭借其在特征学习方面卓越的能力吸引了越来越多的研究者。鉴于深度学习方法在人群计数方面比传统方法的计数精确度更高,本文采用基于深度学习
电动直线负载模拟器(electric linear load simulator,ELLS)广泛应用于航空航天、武器装备及船舶等领域,是重要的地面半实物仿真设备。ELLS可模拟直线舵机在实际工况中所受到的恒定或交变的载荷,由此完成舵机的机械性能及控制性能的测试。针对ELLS中存在的加载精度低、频宽小和抗扰能力差等问题,对ELLS系统进行了进一步的研究。完成了ELLS与电动直线舵机机理模型的搭建;采
随着群体活动在网络上越来越常见,如何向一个群组推荐一个物品或者一个活动吸引了很多学者的注意。由于群组内部的复杂关系,个性化推荐算法往往无法得到令整个群组满意的商品,因此需要更具针对性的群组推荐算法来进行群组推荐。已有的大部分的群组推荐工作通过融合群组内成员的偏好来表示群组的偏好,这种做法忽略了群组与群组之间的行为相似性。近期,图神经网络在个性化推荐系统显示出了惊人的潜力,图神经网络通过图上的信息流
蠕动机器人是仿生机器人的一种,由于特殊的运动模式和结构,它们具有很强的环境适应性,应用领域广泛。本文通过结合传统蠕动机器人与软体机器人的特点,保留其刚性框架,在关节处加入柔性材料,研制出了一款刚柔结合的小型仿蚕机器人。本文对生物蚕的运动方式进行分析,根据蚕的生理结构和运动规律,在现有小型仿蚕机器人的基础上对其进行柔性化设计。选择硅橡胶作为柔性化材料,设计了柔性腹节驱动器。并通过ANSYS分析驱动器
本文课题依托于国家科技重大专项“功能部件测试试验共性技术研究与能力建设(2016ZX04004007)”,通过前期调研发现,滚珠丝杠副的摩擦力矩波动、刚度、定位精度等关键性能受滚珠精度及滚道加工精度影响较大,而现有文献关于滚珠丝杠副性能与滚动体与滚道误差之间的关系研究较少。以此为背景,本文对影响滚珠丝杠副关键性能的因素和滚珠丝杠副螺旋滚道误差测量两方面进行了深入的理论及试验研究,具体研究内容如下:
随着弹道修正装置向小型化的方向发展,表贴式永磁同步电机因其体积小的特点,而被广泛用作弹道修正装置的执行机构。随着对电机控制性能要求的提高,在矢量控制下,传统PI控制受不确定因素影响大,难以满足控制需求,而滑模控制因其对扰动和参数不敏感的特点,在电机控制中有广阔的应用前景。首先,本文根据舵机的数学模型和三闭环控制原理,设计了舵机矢量控制模型,并搭建了双旋舵机控制系统Simulink仿真模型,为控制算
数控机床关键功能部件核心性能指标直接决定了数控机床的加工性能优劣。本文以国家科技重大专项为研究背景,重点研究基于数控机床KPI体系的关键滚动功能部件载荷谱试验及应用。建立了数控机床KPI体系,确定了数控机床一级指标重要程度为:精度、可靠性及效率;选取了直接影响数控机床精度及可靠性关键指标的关键滚动功能部件(滚动直线导轨副和滚珠丝杠副)的载荷谱作为主要研究内容,建立了滚动功能部件受载模型与寿命预估模