【摘 要】
:
数论函数是数论研究的一个重要内容.其中,Smarandache问题是近年来数论研究的一个热点问题,Smarandache问题不仅包含Smarandache函数,还延伸出了伪Smarandache函数等概念,戴
论文部分内容阅读
数论函数是数论研究的一个重要内容.其中,Smarandache问题是近年来数论研究的一个热点问题,Smarandache问题不仅包含Smarandache函数,还延伸出了伪Smarandache函数等概念,戴德金函数作为一种特殊的数论函数,却鲜有学者进行研究.因此,本文主要对几个数论函数的一些算术性质进行了研究,主要可概括为以下几方面:1、利用初等方法,研究了Smarandache函数在一个特殊数列p pa?b上的下界估计,得到一个较好的渐近公式.2、利用初等方法和解析技巧,研究了伪Smarandache函数在数列p pa+b上的下界估计;伪Smarandache函数与除数函数的混合均值;构造了关于伪Smarandache函数和欧拉函数的方程.并得到两个较有趣的渐近公式,给出方程的所有正奇数解.3、利用可乘函数的定义,Perron公式和解析技巧,研究可乘函数??n?与三个可乘数论函数的复合均值,并通过计算获得了三个较有意义的渐近公式.
其他文献
蒸散即指土壤表面水分蒸发和植被水分蒸腾同时发生的共同作用现象,是从陆表传输到大气中的水分,连接了地表水分循环,二氧化碳循环和能量交换,是水圈、大气圈和生物圈水分和能
林区的数字高程模型(Digital Elevation Model,DEM)在生态学、地学、水文等多个重要领域都具有广泛的应用。机载激光雷达技术(Light Detection and Ranging,LiDAR)受光照、温度、季节等因素影响较小,能够快速获取高精度、高分辨率的真实地面三维坐标数据,成为获取大面积森林地区高精度DEM的重要手段。点云滤波是机载LiDAR数据所有应用的前提和关键步骤,
光学与极化SAR影像能够信息互补,提高城市地物信息提取精度,但是,由于成像原理不同,二者具有几何和辐射特性差异,尤其随着空间分辨率的提高,地物提取复杂度和难度增加,且光学
近些年来,许多学者致力于研究全局最优化问题的算法,并取得一定的进展,本文重点研究基于α-致密曲线的全局优化算法。算法在第一阶段通过α-致密曲线将多变量全局优化问题转
这篇文章重点探究了常利率下双险种风险模型,且其保单总次数服从负二项过程,同时理赔的总次数服从Poisson过程,那么便是常利息下复合负二项双险种风险模型,对其稳定经营的必
动力学建模与求解是多体系统动力学仿真的主要研究内容。微分-代数方程是具有普遍性的传统多体系统动力学模型,数值积分方法的稳定性、高效性以及高精度是诸多动力学和应用数
主要研究了粘性Cahn-Hilliard方程吸引子的存在性问题.探讨粘性Cahn-Hilliard方程在自治系统解的长时间性态,证明了粘性Cahn-Hilliard方程存在全局吸引子.同时考虑了粘性Cahn
随着中国国际地位和影响力的提升,来华的留学生人数逐年上升。此外,中国也提出要加强世界一流大学的建设。因此,各高校为了加快国际化进程,纷纷创办了自己的英文版网站。高校的英文版网站主要包括学校简介以及与学校相关的重要新闻。确保新闻翻译质量,可以使国内外读者对学校有更全面深入的了解,并且有助于提高学校的国际知名度和影响力,故而不断提高学校网页新闻英译质量具有深远的意义。本次实践活动所翻译的新闻材料均来自
现如今,管道和隧道已成为运输流体的主要方式,如水、石油和天然气等流体的传输。但是露天管道往往会受到极端天气的影响,导致管道被腐蚀、被尘土积压、开裂、点蚀等等。因此,需要定期对管道进行检查,以保证管道的安全。而人工定期检查是评估管道物理和功能状况最常见的形式,这种方式成本高昂且极不方便,并且由于人的主观因素,往往不能够全面检测导致状态评估不足,所以,亟需一种低成本,准确率高的方法。论文的初始对一种管
矩阵不等式在矩阵理论研究中具有重要的应用,而矩阵的Schur补及Fischer不等式问题是矩阵不等式研究的热点;它们不仅可以处理大规模的矩阵计算,而且在线性规划中也有一定的应