论文部分内容阅读
监控视频的运动目标检测和人体行为分析技术是以人为监控目标的监控系统自动化的关键技术。该技术在交通监管、军事航天、体育竞技等领域具有广泛应用,对于如机场、火车站等人流量较大的公共场所的安全防范工作尤其重要。人工的监察耗时长、工作量大且易疏漏。因而基于监控视频的运动目标的自动检测和人体行为自动化识别技术具有重要研究意义与价值。本文的主要研究内容包含三个方面,其中运动目标检测、多行人跟踪及人体行人识别为主要研究内容。本文先通过一种用置信度将纹理和颜色特征融合的背景差分法检测出运动目标区域,并对运动目标中的人体进行检测和跟踪,最后基于跟踪所得的人体动作关键帧序列对人体走、奔跑、慢跑、拍手、挥手5种动作进行分类。本文的主要研究内容如下:(1)通过综合比较颜色特征和纹理特征在运动目标检测中的优缺点,针对两者的优缺点提出了一种基于纹理和颜色特征置信融合的运动目标检测方法。该方法以局部三值模式纹理特征(Scale Invariant Local Ternary Pattern,SILTP)值与RGB颜色信息值及各自的置信度一起构建背景模型,然后根据相似度匹配对像素点分类。实验证明本文提出的方法能有效改善光照变化和阴影造成的误检,对复杂动态背景也有一定的处理效果。(2)DPM(Deformable Parts Model)算法是目前具有最高水平行人检测效果的多模型、多尺度行人检测算法,本文基于DPM良好的行人检测效果,提出了一个多行人跟踪框架。该框架基于Kalman滤波的单行人跟踪器对每个行人跟踪,然后用JPDA数据关联算法将检测与目标关联从而实现多行人跟踪。该跟踪框架对遮挡和尺度较小的行人也能有效跟踪。(3)对传统的基于时空兴趣点的人体行为分析算法做出改进。在原来的算法基础上引入人体的宽高比特征、速度与时空特征一起构建行为特征向量。并通过k-means算法对特征向量分类。最后根据Hausdorff距离计算相似度,从而将动作分类。本文通过加入跟踪所得的动作之人的宽高比特征和速度特征。通过实验证明改进后的算法能更好的将走、奔跑、慢跑加以区分,宽高比特征的加入也使得拍手和挥手的识别率提高。