设u是欧氏空间Rd上的一个非负RadOn测度,且满足如下的增长性条件:即存在常数C>0及某个定数n∈(0,d)使得对任意的x∈Rd及任意的r>0,都有其中B(x,r)={u∈Rd:(?)
论文部分内容阅读
设u是欧氏空间Rd上的一个非负RadOn测度,且满足如下的增长性条件:即存在常数C>0及某个定数n∈(0,d)使得对任意的x∈Rd及任意的r>0,都有其中B(x,r)={u∈Rd:(?)<r),则(Rd,u)称为非齐型空间.本文主要讨论非齐型空间上的分数次积分算子与RBM0(u)函数生成的交换子的有界性.在第一章中,我们利用Hardy型空间上的原子块分解技术,证明了分数次积分算子交换子是从(?)(u)到(?)(u)的有界算子.在第二章中,我们参照Herz型空间中的证明方法,建立了非齐型空间上的分数次积分算子交换子在Merry—Herz空间中的有界性.在第三章中,我们得到了非齐型空间上的分数次积分算子交换子在广义Merry空间中的有界性,这部分内容包含了M。一y空间上的相应结果.
其他文献
侧颈龟亚目(Pleurodira)代表了一支比较古老的分类群,它们与曲颈龟亚目(Cryptodira)共同构成地球上最为特化的一支爬行动物——龟鳖目(Testudinata)。尽管现生侧颈龟类仅分布在南半球的少数地区,但却代表了现生龟鳖目四分之一的物种多样性。本研究采用PCR、Long–PCR及测序技术获得了代表蛇颈龟科(Chelidae)的皱面长颈龟(Chelodina rugosa)、玛塔蛇颈
可溶性吡啶核苷酸转氢酶(soluble pyridine nucleotide transhydrogenase, STH or UdhA) (EC 1.6.1.1)是一种黄素蛋白,能特异地催化NADH和NADPH吡啶环上的4B氢可逆转移到NADP+和NAD+上。STH分布范围有限,只分布在γ-变形菌纲和少数革兰氏阳性细菌中,主要参与维持和调节细胞内氧化还原平衡,已被广泛地应用于辅酶再生体系和代谢
本文利用因式化方法和轨道角动量量子数的升降算符的性质,导出了一个仅用两个主量子数n和n′表示的氢原子偶极振子强度的实用计算式,从理论上解决了振子强度计算中对轨道角动量量子数进行求和运算的问题。对氢原子的偶极振子强度进行了一系列具体计算,计算结果与有关文献的结果一致,并提供了大量新的振子强度数值。利用上述实用计算式,进一步给出了氢原子的谱线强度和平均能级寿命的计算式,有效地简化了这类计算工作,具体计
稀土离子拥有部分填充的4f壳层,该壳层电子之间的各种相互作用导致了离子中存在大量可发生光跃迁的电子能级。这些丰富的光跃迁能级以及基质材料自身的优异性能使得掺杂稀土离子的各种光学材料在实际生活的各个领域有着广泛的应用。近年来,随着计算机硬件和并行算法的快速发展,第一性原理计算已经成为物理、化学等众多领域不可或缺的研究手段。本课题主要致力于利用现代高性能计算机和密度泛函理论进行稀土发光材料的计算模拟研
本文引入了拟ZI-环,左(右)WAP-内射环和广义N-半正则环的概念,分别讨论了它们的若干性质以及它们与一些特殊环的关系,并且借助它们来研究了一些特殊环的正则性.全文共分为二章.第一章,引入了拟ZI-环的概念,讨论了拟ZI-环的性质以及环的非奇异性与正则性.主要得到如下结论:(1)如果R是拟ZI,左环,则R是左和右非奇异的.(2)设R是一个环.下列条件是等价的:(a)R是强正则环;(b)R是拟ZI
原子激发态的光电离截面是指在原子与光子相互作用时,原子从某个能级发射出一个电子的几率大小。研究原子的光电离截面可以揭示原子的电子结构、多电子效应、辐射重组、多通道电离及多通道电离干涉效应等。在受控热核聚变、大气物理、天体物理、星际科学、辐射化学、物理和生物等诸多领域有着广泛的应用,尤其在天体物理领域具有非常重要的应用价值。另外,准确的光电离截面数值还可以检验光电离过程理论计算结果,并推动理论计算方
本文主要讨论了几类具有激波层现象的非线性奇摄动问题.在适当的条件下,分别运用Van Dyke匹配法、间接匹配法构造出问题的解的渐近表达式.对第一个问题,在运用Van Dyke匹配方法构造形式渐近解时,还运用微分不等式理论给出了所构造的形式渐近解一致有效性的证明.文章的结构安排具体如下:第一章简述了奇异摄动问题的研究意义和概况,综述了奇摄动问题(主要是激波层问题)在国内外的研究成果,并陈述了本文要用
1941年Erd(o|¨)s和Turán在研究加法表示函数时提出了著名的Erdo(o|¨)s-Turán猜想.该猜想在加法表示函数领域产生了深远的影响,围绕此猜想数学家们展丌了一系列的相关研究,如表示函数的均值问题:类似的Erdo(o|¨)s-Turán猜想在一些代数结构中的情况等.这些问题的研究大大推动了加法数论的发展.设S是一个半群,对集合A(?)S及元素g∈S,我们定义δA(g) =#{(a
美国数学家Lotka(1925年)和意大利数学家Volterra(1926年)提出了著名的Lotka-Volterra模型.最初他们提出的模型是基于捕食与被捕食两种群的情形,随着泛函微分方程理论在生物数学中的广泛应用和生态学的需要,人们又建立了具有时滞的Lotka-Volterra模型.Lotka-Volterra按其生态意义可以分为三类:竞争模型,捕食-食饵模型和互惠合作模型.本文将对这三类模型
本文研究了环R[ D,C]的Morphic性及其推广,以及G-morphic环和正则环之间的关系第一章介绍了Morphic环,G-morphic环的背景知识及一些研究现状.第二章介绍了Morphic环,G-morphic环,正则环和G-π正则环之间的关系.第三章介绍了环R[ D,C]的Morphic性,接着研究了环R[ D,C]的G-morphic性,给出了R[ D,C]是左G-morphic环的