论文部分内容阅读
在复杂的场景下,单特征对目标描述不够充分,很难稳健地跟踪目标,针对这个问题,提出了一个基于自适应多特征融合的粒子滤波跟踪算法。该算法采用灰度和边缘特征表示目标,从目标观测似然模型构建的角度融合两种特征,利用粒子似然分布的香农熵动态地评价特征的可靠性,进而确定特征融合权重,以提高算法对场景的适应能力;同时,改进了线性加权的模型更新策略,通过对加权系数的在线调整来抑制模型漂移。实验表明,该算法可以实现部分遮挡和背景干扰等复杂场景下的跟踪。