论文部分内容阅读
From the magnetotelluric detection in the epicentral region and the adjacent areas of the 1605 M7.5 Qiongzhou earthquake, we have discovered there is a low resistive body in the deep crust of the epicentral region. The low resistive body extends straightly from the depth of about 13 km to the upper mantle, which is supposed as an up-rising mantle pole. We therefore consider it is just the existing mantle pole and its upwelling thermal material that result in the faulting and stick-slipping activities of the upper crust, which is an important factor for the M7.5 Qiongzhou great earthquake occurrence. The postseismic faulting activity is characterized by creep, which shows that the risk is greatly decreased for the occurrence of a great earthquake with similar intensity in the future.
From the magnetotelluric detection in the epicentral region and the adjacent areas of the 1605 M7.5 Qiongzhou earthquake, we have discovered there is a low resistive body in the deep crust of the epicentral region. The low resistive body extends straightly from the depth of about 13 km to the upper mantle, which is supposed as an up-rising mantle pole. We therefore consider it is just the existing mantle pole and its upwelling thermal material that result in the faulting and stick-slipping activities of the upper crust, which is an important factor for the M7.5 Qiongzhou great earthquake occurrence. The postseismic faulting activity is characterized by creep, which shows that the risk is greatly decreased for the occurrence of a great earthquake with similar intensity in the future.