论文部分内容阅读
基于修正的一阶剪切变形理论,利用Hamilton原理导出包含横向剪切变形和转动惯量的复合材料长圆柱曲板的非线性动力方程;通过将位移和载荷展开为Fourier级数,把非线性偏微分方程组转化为二阶常微分方程组,并用四阶Runge-Kuta方法数值求解.通过算例,讨论了载荷形式、几何非线性、横向剪切变形以及辅层方式等因素对动力响应的影响.
Based on the modified first-order shear deformation theory, the nonlinear dynamic equation of a long cylindrical composite plate with transverse shear deformation and moment of inertia is derived by using the Hamilton principle. By shifting the displacement and load into Fourier series, Differential equations are transformed into second-order ordinary differential equations and solved numerically using the fourth-order Runge-Kuta method. The effects of load form, geometric nonlinearity, transverse shear deformation and auxiliary layer mode on the dynamic response are discussed.