论文部分内容阅读
Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds(VOCs),particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks(MOFs),referred as ZMF,has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5(ZSM-5)Zeolitic structure,referred as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area,pore volume,and VOCs adsorption capacity,as compared to ZF-structure.Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs(benzene,n-hexane,and cyclohexane),using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene > n-hexane > cyclohexane. In comparison with MOF-199 and ZF,the composite structure ZMF shows improvement in selectivity for benzene from other two VOCs. Further,improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units.
Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds (VOCs), particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks (MOFs), referred as ZMF, has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5 (ZSM-5) Zeolitic structure, referred to as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area, pore volume, and VOCs adsorption capacity, as compared to ZF-structure. Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs (benzene, n-hexane, and cyclohexane), using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene> n-hexane> cyclohexane. In the composite structure ZMF shows improvement in selectivity for benzene from othe Further, improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units.