【摘 要】
:
无人机的一种典型应用是对地面目标进行定位.本文考虑,在无人机的飞行过程中,无人机在特定位置悬停,并广播信标信号.若地面节点与无人机悬停位置的距离满足通信范围,即可监测到无人机的信标信号,当地面节点监测到3个及以上不同悬停位置的信标信号时,即可使用多边定位法对自身进行定位.文中主要解决了如何选择悬停位置以及如何在悬停位置给定的情况下优化无人机飞行路径的问题,提出了两种无人机的悬停方案,并规划了两种方案下无人机的飞行路径,证明了两种悬停方案下提出的路径均为最短回路.通过模拟实验,验证了所提方案可以实现对待覆盖
【机 构】
:
南京航空航天大学计算机科学与技术学院 南京211106
论文部分内容阅读
无人机的一种典型应用是对地面目标进行定位.本文考虑,在无人机的飞行过程中,无人机在特定位置悬停,并广播信标信号.若地面节点与无人机悬停位置的距离满足通信范围,即可监测到无人机的信标信号,当地面节点监测到3个及以上不同悬停位置的信标信号时,即可使用多边定位法对自身进行定位.文中主要解决了如何选择悬停位置以及如何在悬停位置给定的情况下优化无人机飞行路径的问题,提出了两种无人机的悬停方案,并规划了两种方案下无人机的飞行路径,证明了两种悬停方案下提出的路径均为最短回路.通过模拟实验,验证了所提方案可以实现对待覆盖区域的完全覆盖,使任意地面节点均可实现定位;并且该方案可以通过调整无人机飞行高度和悬停方案中的网格大小,来提高定位精度.
其他文献
俄语的多模态情感分析技术是情感分析领域的研究热点,它可以通过文本、语音和图像等丰富信息自动分析和识别情感,有助于及时了解俄语区民众和国家的舆论热点.但目前俄语的多模态情感语料库还较少,因而制约了俄语情感分析技术的进一步发展.针对该问题,在分析多模态情感语料库的相关研究及情感分类方法的基础上,首先制定了一套科学完整的标注体系,标注内容包括话语、时空和情感3个部分的11项信息;然后在语料库的整个建设和质量监控过程中,遵循情感主体原则和情感连续性原则,拟订出操作性较强的标注规范,进而构建出规模较大的俄语多模态情
由于缺少连接词信息,隐式篇章关系识别模型需要基于两个论元(子句或者句子)的语义来推导它们之间的篇章关系,但目前性能还比较低.对于语料标注人员而言,隐式篇章关系的标注是很困难的,他们通常先插入一个合适的连接词用于辅助隐式篇章关系的标注.基于上述情况,文中提出了一种基于知识蒸馏的隐式篇章关系识别方法,其目的是利用语料标注时插入的连接词信息来提高识别的性能.具体地,先构建一个连接词增强的模型用于融合连接词信息,然后基于知识蒸馏的方式把连接词增强模型学到的知识迁移到隐式篇章关系识别模型中.实验结果表明,在常用的P
针对简单的神经网络缺乏捕获文本上下文语义和提取文本内重要信息的能力,设计了一种注意力机制和门控单元(GRU)融合的情感分析模型FFA-BiAGRU.首先,对文本进行预处理,通过GloVe进行词向量化,降低向量空间维度;然后,将注意力机制与门控单元的更新门融合以形成混合模型,使其能提取文本特征中的重要信息;最后,通过强制向前注意力机制进一步提取文本特征,再由softmax分类器进行分类.在公开数据集上进行实验,结果证明该算法能有效提高情感分析的性能.
随着移动通信技术的升级与移动通信产业的兴起,移动互联网正蓬勃发展.然而,由于移动设备爆发式增长,网络规模不断扩大和用户对服务质量的要求的不断提高,移动互联网络正面临着下一场技术革命.虽然5G技术可以通过密集的网络部署来实现千百倍的网络性能提升,但同信道干扰和高突发性的用户请求等问题使得该方案下需要消耗巨大的能量.为了在5G网络中提供高性能服务,升级改进现有网络管理方案势在必行.针对这些问题,使用带缓存队列的短周期管理框架实现对请求突发场景的敏捷平滑管理,避免由突发性请求导致的服务质量剧烈波动.此外,采用深
传统K-means算法应用于入侵检测,存在聚类数目难以估计的缺点,导致入侵检测效果不佳.针对这个问题,提出了一种改进的K-means入侵检测算法.算法根据有效性指标确定最优的聚类数目;依据各维特征对聚类效果的影响进行加权;引入三支决策聚类方法改善聚类效果.在kddcup99数据集的实验结果表明,与传统K-means算法相比,改进后的K-means算法提高了入侵检测的检测率,降低了其误报率.
为了解决传统A~*算法规划路径时未考虑到障碍物分布对路径选取的影响,文中提出了一种改进的A~*算法。将人工势场的思想与传统的A~*算法相结合,对栅格地图中的障碍物赋予斥力场函数并计算周围栅格的斥力大小,进行路径搜索时将栅格的斥力大小引进到A~*算法的评价函数当中以改进A~*算法的搜索能力。通过MATLAB仿真和Turtlebot机器人的实验结果表明,与传统的A~*算法相比,改进后的新算法与人工势场
针对部分传统骨架提取方法提取骨架位置偏离中轴的问题,提出了一种基于距离变换的A~*搜索骨架的提取方法。根据距离变换和形态学分水岭算法获得包含物体骨架的骨架潜在图,通过主动轮廓线模型确定骨架关键点,通过A~*算法对骨架线进行搜索,得到骨架。实验证明,该方法获得的骨架具有连通性、单像素性、多尺度性及位置准确等优点。
提出了一种改进的基于分解的多目标进化算法,用于解决不连续帕累托前沿的多目标优化问题中出现帕累托近似前沿分布不均匀与不完整的问题.主要的思想是通过基于密度的聚类算法将尽量逼近帕累托前沿的种群划分为若干个子种群,将不连续帕累托前沿问题转化为多个连续子问题,然后协同演化所有子种群,最后获得更为均匀与完整的帕累托解集.实验表明对于处理不连续帕累托问题的优越性.
利用电加热板对背胶连接类型手机后盖进行加热处理,能够实现手机后盖的有效拆解.研究出一种基于模糊自适应PID的手机后盖加热控制系统,控制核心为STC89C52RC单片机.对加热系统的电加热板进行数学建模,利用模糊控制对传统PID控制进行在线参数整定.同时,在Matlab2013a的Simulink模块建立模糊自适应控制器与传统PID进行比较分析比较.仿真结果表明,模糊自适应PID可以得到超调量小、调整速度快且稳定性更高的控制效果.
FP-growth算法是关联规则挖掘中一种经典的算法,它不需要产生候选集,只需要扫描事务数据库两次来构建项目头表和FP-Tree.但该算法项节点查询比较耗时,而且要递归生成条件FP-tree,所以内存开销大.针对上述问题,文中提出了一种基于FP-growth的新的频繁模式挖掘算法MGFP-growth.其思想是:首先算法弃用项目头表,使用二维矩阵存储事务的信息,按照矩阵列进行分组,并建立parenttrace关系;最后利用存储在数组中的gourp信息可以快速的构建频繁模式树,从而进行频繁项集的挖掘.实验表