论文部分内容阅读
“列分式方程解应用题”向来是初中学生,尤其是女学生最畏惧的难点学习内容。其原因是:学生不懂得分析题意,理不清题目中复杂的数量关系,无法准确找到由未知到已知的钥匙——相等关系。那么如何突破这一难点呢?经过反复的实践尝试,我发现在教学“列分式方程解应用题”这一内容时,应当重视设问启导,教会学生如何寻找相等关系,从而正确列出方程。具体做法是:
1. 可以根据不同类型的应用题设置相关的问题串来启发引导学生分析、理解题意,理顺题中的数量关系。
2. 运用列表格帮助学生分析问题中的数量及数量之间的关系,并把文字语言转化为数学符号语言。
请看下面一个行程问题:
从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间。
教学时可设置下列的问题来引导学生思考,从而达到理解题意的目的:
1. 这是什么类型的问题?问题的两种对比方式是什么?(行程问题,客车在高速公路上行行驶和在普通公路上行驶两种方式)
2. 与行程问题有关系的数量有哪些?它们之间有什么关系?(路程s、速度v、时间t;关系:s=vt,v=s/t,t=s/v)
3. 题中已知哪些数量?未知量是什么?该设哪一个未知数为x,又可用x表示哪一个未知数?(普通公路长600km,高速公路长400 km;可设客车在高速公路从甲地到乙地所需的时间为x小时,则客车在普通公路上从甲地到乙地所需的时间为2x小时)
4. 题目中的哪一个句子揭示了相等关系?试将其写成等式。(客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快45km/h;即客车在高速公路上行驶的平均速度减客车在普通公路上行驶的平均速度等于45km/h)
通过这样的设问引导,学生在充分思考后,已基本能充分且全面地理解题意。渐渐地,经过反复的训练,学生便在潜移默化中学会了这种读题、审题的思考和分析方法。
紧接下来,再引导学生完善下面的表格:
用这样的列表法,可以把题目中所含的未知量和已知量清晰明了地呈现出来,便于理解题意,从而列出方程。对于数量繁多、关系复杂的应用题更应采用这样的列表分析法。
再看下面的例题:
某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求。商厦又用17.6万元购进了第二批这种衬衫,所购进的数量是第一批购进量的2倍,但单价贵了4元。商厦销售这种衬衫时每件都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共盈利多少元?
教学时可设置下列的问题:
1. 问题的对比方式是什么?(第一批销售和第二批销售)
2. 与销售问题有关的数量有哪些?(进货量、进货单价、进货总额、销售量、销售单价、销售总额、利润等)
3.上述数量之间有什么关系?试用等式表示。
它们之间的关系是:
①进货单价=进货总额 ÷ 进货量
②销售总额=销售单价×销售量
③第二进货量=2×第一批进货量
④利润=销售总额-进货总额
4. 这个问题中已知数量是什么?未知数量是什么?应该直接设未知数,还是间接设未知数?(已知两批进货总额分别是80000元和176000元、两批的销售单价都是58元/件;要求的未知数是总利润,但不方便直接设这一未知数,应间接设购进的第一批衬衫为x件)
5. 试用列表分析的方法表示上述有关的数量关系。(表略)
6. 问题中的哪一个句子揭示了由已知到未知之间的相等关系?试用等式表示。(第二批的进货单价比第一批的贵4元;第二批的进货单价减第一批的单价等于4元)
对于这样一道数量繁多、数量关系复杂的应用题,如果没有教会学生掌握有效的读题、审题、分析和思考的方法,学生的审题过程便容易陷入漫无目的的左思右想的境地,最终没法理清题目的数量关系,从而不能正确列出方程。
责任编辑 罗 峰
1. 可以根据不同类型的应用题设置相关的问题串来启发引导学生分析、理解题意,理顺题中的数量关系。
2. 运用列表格帮助学生分析问题中的数量及数量之间的关系,并把文字语言转化为数学符号语言。
请看下面一个行程问题:
从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间。
教学时可设置下列的问题来引导学生思考,从而达到理解题意的目的:
1. 这是什么类型的问题?问题的两种对比方式是什么?(行程问题,客车在高速公路上行行驶和在普通公路上行驶两种方式)
2. 与行程问题有关系的数量有哪些?它们之间有什么关系?(路程s、速度v、时间t;关系:s=vt,v=s/t,t=s/v)
3. 题中已知哪些数量?未知量是什么?该设哪一个未知数为x,又可用x表示哪一个未知数?(普通公路长600km,高速公路长400 km;可设客车在高速公路从甲地到乙地所需的时间为x小时,则客车在普通公路上从甲地到乙地所需的时间为2x小时)
4. 题目中的哪一个句子揭示了相等关系?试将其写成等式。(客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快45km/h;即客车在高速公路上行驶的平均速度减客车在普通公路上行驶的平均速度等于45km/h)
通过这样的设问引导,学生在充分思考后,已基本能充分且全面地理解题意。渐渐地,经过反复的训练,学生便在潜移默化中学会了这种读题、审题的思考和分析方法。
紧接下来,再引导学生完善下面的表格:
用这样的列表法,可以把题目中所含的未知量和已知量清晰明了地呈现出来,便于理解题意,从而列出方程。对于数量繁多、关系复杂的应用题更应采用这样的列表分析法。
再看下面的例题:
某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求。商厦又用17.6万元购进了第二批这种衬衫,所购进的数量是第一批购进量的2倍,但单价贵了4元。商厦销售这种衬衫时每件都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共盈利多少元?
教学时可设置下列的问题:
1. 问题的对比方式是什么?(第一批销售和第二批销售)
2. 与销售问题有关的数量有哪些?(进货量、进货单价、进货总额、销售量、销售单价、销售总额、利润等)
3.上述数量之间有什么关系?试用等式表示。
它们之间的关系是:
①进货单价=进货总额 ÷ 进货量
②销售总额=销售单价×销售量
③第二进货量=2×第一批进货量
④利润=销售总额-进货总额
4. 这个问题中已知数量是什么?未知数量是什么?应该直接设未知数,还是间接设未知数?(已知两批进货总额分别是80000元和176000元、两批的销售单价都是58元/件;要求的未知数是总利润,但不方便直接设这一未知数,应间接设购进的第一批衬衫为x件)
5. 试用列表分析的方法表示上述有关的数量关系。(表略)
6. 问题中的哪一个句子揭示了由已知到未知之间的相等关系?试用等式表示。(第二批的进货单价比第一批的贵4元;第二批的进货单价减第一批的单价等于4元)
对于这样一道数量繁多、数量关系复杂的应用题,如果没有教会学生掌握有效的读题、审题、分析和思考的方法,学生的审题过程便容易陷入漫无目的的左思右想的境地,最终没法理清题目的数量关系,从而不能正确列出方程。
责任编辑 罗 峰