【摘 要】
:
通过超范围使用定义、概念、公式、运算法则或者巧妙地误导、错误地默认、错误地推理等方法构造出悖论,这样的悖论称之为练习性悖论.练习性悖论具有较强的挑战性,能够积极地
【机 构】
:
甘肃省山丹县清泉学校,甘肃省山丹县第二中学
论文部分内容阅读
通过超范围使用定义、概念、公式、运算法则或者巧妙地误导、错误地默认、错误地推理等方法构造出悖论,这样的悖论称之为练习性悖论.练习性悖论具有较强的挑战性,能够积极地置学习者于矛盾之中、问题之中,能够激发学习者的惊讶、兴趣,进而激起学习者的探索、研究,促使学习者以应战者的角色进入积极主动的学习状态,而这样的学习状态应该更有利于激发思维的质疑性、强化思维的辨析性、提升思维的严谨性和创造性,并且能够很好地预防推理过程中出现逻辑漏洞,从而提升学习者的逻辑推理能力.
其他文献
数学的独特育人功能主要体现在培养学生的思维特别是逻辑思维上,要帮助学生学会思考,特别是学会“有逻辑地思考”、创造性思考,使学生成为善于认识问题、善于解决问题的人才.
从一般理论而言,作文水平是衡量学生整个语言水平的重要标志,因此,教师往往把作文教学看成是语文教学的重头戏,想方设法加强学生的作文训练。加强训练,当然无可厚非,但学生
27例肾上腺肿瘤及增生中皮质醇症8例、嗜铬细胞瘤16例、原发性醛固酮增多症、髓质增生症及无功能性肿瘤各1例。定位诊断主要为CT检查及腹膜后注气造影。皮质醇症术前应有效地
一件残器为何成为日本重要文化遗产,仅次于国宝,只因是龙泉青瓷。8月底在日本九州国立博物馆观看"室町将军"展时,有幸一赏藏于东京国立博物馆的著名残器--"马蟥绊"青瓷碗,这
如果我写出86、87、88、89、90,并请问:它们有什么特别之处?相信许多人都会摇头嘀咕:'除了这是五个连续自然数之外,好象也看不出什么名堂嘛.'果真如此吗?请看下面的
伽利略(1564~1642)是享誉世界的意大利物理学家、天文学家,他是经典力学和实验物理学的先驱,著名的"比萨斜塔实验"就出自其手.他还是第一个利用望远镜观察天体取得成功的人.
"两点间线段最短"是初中数学非常重要的一个公理,且应用广泛,在中考中也是热点,如两条线段之和最短的问题,在圆柱和长方体侧面展开图中利用勾股定理求出两点的最短路程的问题,
2016暑假,清华大学第三教学楼一层的11间教室悄然发生变化:教室前原有的近30厘米高的讲台被"夷为平地",讲台和教室处在了"同一海拔"上.那么,削平讲台又是何初衷呢?原来,此举正是为
对肺心病患者采用放射免疫测定(RIA)血清β_2微球蛋白(Sβ_2M)和尿β_2微球蛋白(Uβ_2M),尿白蛋白(UAlb)、尿免疫球蛋白G(UI_gG)、尿TH糖蛋白(UTHP),结果表明肺心病存在肾功
问题(2018·贵阳)如图1,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形DEFG,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为____.解:如图2