论文部分内容阅读
随着工业系统复杂性的逐步增加,对故障预测的实时性和准确性提出了更高的要求.对此,提出一种基于动态记忆反馈的改进ELM神经网络模型进行故障预测.此模型在结构上增加了反馈层用于记忆隐含层输出,并从反馈层记忆的信息中提取数据变化趋势特征,从而动态更新反馈层的输出权值.通过对非线性动态系统的下一时刻输出进行预测,并对预测输出进行诊断,达到故障预测的目的.通过人工数据Sinc验证和TE过程实例应用表明了所提出方法具有预测精度高、动态适应能力强等优点,对非线性时序系统具有较好的预测能力.