透视新的“读书无用论”

来源 :湖南教育 | 被引量 : 0次 | 上传用户:hbzjl001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在举国上下大喊尊重知识,尊重人才的今天,社会上却产生了一种新的“读书无用论”,并大有蔓延之势。这可从学生流动情况反映出来。我乡今年上学期,期初有小学生2145人,到期末,非正常流动121人,流动率为5.16%;初中生951人,到期末,非正常流动165人,流动率为17.4%。本届初中毕业生,初一入学人数366人,毕业时只剩179人,三年流动189人,流动率高达51.1%。青少年不愿读书,是因为现实生活的“教育”,使他们得出“读书无用”的结论。下面仅从几个角度初步透视。 Today in the nation, shouting respect for knowledge and respecting talents, a new “useless theory of reading” has emerged in the society and there has been a great tendency to spread. This can be reflected from the flow of students. In the previous semester of my hometown this year, there were 2,145 primary school students at the beginning of the period. At the end of the period, there were 121 non-normally mobile workers with a turnover rate of 5.16%. There were 951 junior high school students. At the end of the term, there were 165 non-normal mobile workers and the turnover rate was 17.4%. This year’s junior high school graduates had 366 enrollments in the first year of their studies. There were only 179 graduates when they graduated and 189 people moved in three years. The turnover rate was as high as 51.1%. Teenagers are reluctant to read because the “education” of real life leads them to conclude that reading is useless. The following is a preliminary perspective from only a few perspectives.
其他文献
研究物理学就得进行测量,随着研究的深入,发现某些物理量不能直接测得,必须通过一定的原理或方法对另一些物理量进行测量之后才能间接测得,这个过程我们称之为测量变换。比如
作为中国文化史上最伟大的诗人之一,杜甫的诗对今天的人们而言,其传承的巨大意义自不待言。而今译便是承传的最有效方式之一。但通观近些年来市面上流行的一些有关杜甫诗作的
有些填数问题很有趣,例如在图1中,顶点有15个,连接相邻两顶点的边有14条,在每个顶点旁填一个数 Some filling problems are very interesting. For example, in Figure 1,
再发性尿路感染是尿路感染经治疗后,细菌尿阴转以后再次发生真性细菌尿,可分为重新感染与复发。其临床表现为反复发作的尿频、尿急、尿痛等尿路刺激症状,每年多次发作,严重影
“黑天鹅事件”是完全不可预测的,更不可能找出他们的函数关系。唯一明智的选择就是,通过建立“反脆弱性”来从中获益,而不是受损。《反脆弱》是一本很容易引起误读的书。《
下述是复数部分的一道常见习题。判断命题(A)的真假,并说明理由:复数集 C 与复平面内所有向量的集合一一对应(A).(高中代数(甲种本)第二册 P_(236))人民教育出版社出版的《
在美育课中,我谈到“生活中的美”的时候,引用了艺术大师罗丹的话:“美是到处都有的,对于我们的眼睛,不是缺少美,而是缺少发 In the aesthetic education class, when I talked ab
现行中学课本《微积分初步(甲种本)》(以下简称“课本”)在“二阶导数的应用”一节导出了如下的Taylor公式 f(x)=f(x_0)+f′(x_0)(x-x_0)+1/2f″(§)(x-x_0)~2 (1) 其中f(x)
本文给出一次初三数学课外活动的设计,旨在诱导学生联想探索,给出学生自我猎取知识的思维方法,培养其创造性思维.例1 在△ABC 中,BC=a ,AC=b,以AB 为边作正△ABD,使 D、C 落
请下载后查看,本文暂不支持在线获取查看简介。 Please download and view, this article does not support online access to view profile.