论文部分内容阅读
中图分类号:G633.6 文献标识码:A 文章编号:1007-4309(2014)02-0062-01
函数是中学数学中最重要的内容之一,它揭示了事物运动变化的规律和相互关系的本质,作为一条主线贯穿于中学数学的始终。初中阶段采用传统定义把函数看成变量之间的依赖关系,在教学中多采用学生熟悉的具体实例,引导学生认识其中的变量关系,在探索过程中,学生可以获得变量之间相互依赖关系的切身感受,由此体验函数关系的产生过程,为后面的抽象概念学习打下基础。怎样进行函数教学呢?笔者结合自己的教学实践谈一孔之见,以就教于方家。
一、弄清概念,回归生活
函数比较抽象,对于刚刚接触函数的初中生不是很容易理解。所以,在函数的教学过程中,我们要尽可能的利用简单易懂的语言。“函数”,是对两个变量而言,研究函数关系,就是研究两个变量之间的关系,两个变量之间不同的数量关系对应着不同的函数关系。
通过引导,学生是能够把生活中的实例和函数结合起来的。例如:在讲完了函数的入门知识后,给学生留一个“作业”:自己搜集数据资料,并通过所学到的知识,来分析这些数据,并通过分析的结果,提出新的问题。可以给几个参考:电费;水费;煤气费。这样的题目有点像应用题,但解决起来又比应用题更难。有的同学回家向家长要各种交费单据,有的同学则自己测量并收集数据。其中,有一个同学很出乎我的意料,他收集的是学校旁边的一个公共停车场的停车数量,每次下课的10分钟就看一次,并记下停车的数量,得出初步结论,并提出问题:“在一天的什么时间里,停车位最好找?”这个问题甚至我都没想过,虽然这并不完全符合函数的概念,但这个问题可以称为经典问题,这个学生的数学运用能力非常不一般。
二、整体思想,提纲挈领
整体思想是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用集成的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理等都是整体思想方法在解数学问题中的具体运用。例如:已知y+b与x+a(a,b是常数)成正比例,(1)试说明y是x的一次函数:(2)如是x=3时,y=5,x=2时,y=2,求y与x的函数关系式。解决这个问题(1)时,我们就要把y+b与x+a都看成一个整体,设y+b=k(x+a)得出y=kx+ak-b,从而说明y是x的一次函数,解决问题(2)时,当我们把握两组数值代入解析式y= kx+ak-b中后得到一个三元二次方程组,显然不能求出每个未知数的值,但我们可以把ak-b看作一个整体,就可以求出k=3, ak-b=4,从而求出y与x的函数的关系式是y=3x-4,在这个问题中两次运用到整体思想方法。
三、数形结合,化难为易
数形结合思想方法是数学中非常重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题,利用它可使复杂问题简单化,抽象问题具体化。
解析法、列表法、图象法等函数的表示方法本身就体现着函数的“数形结合”。函数图象就是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中需要注意以下几点:
首先,经历绘制函数图象的具体过程。对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。
其次,不急于呈现画函数图象的简单画法。在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;教师过早强调图象的简单画法,追求方法的“最优化”,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。
第三,把握研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。
四、比较分析,发现规律
有数学专家说,数学规律的得出不外乎几种方法:分析、归纳、比较等。对于函数学习而言,比较是一种比较好的方法,例如,如果两直线有交于某一点,则此点的坐标为两函数共同的解;如果两一次函数有共同解,则此解一定为两直线的交点等规律的发现,也可交由学生在比较中得出。
需要强调的是,在实际教学中作出这样的选择,有两个关键认识:一是从教学理念上,对于学生自己跳一跳、摘得到的知识点,一定要敢于放手,不能包办,而一个知识点是否属于这种性质,则需要教师结合自身教学经验,研究学生的实际情况,然后作出准确判断;二是要给足学生的时间与空间,因为学生的自主学习一定会出现许多意想不到的情况,所用时间一定大于教师讲授所用的时间,而学生在自学过程中,还有可能需要生生互动,需要下位交流等,这时教师都要给足学生自由。否则,自主学习的理念便不可能落实,自主学习就沦为形式主义了。
五、类比教学,举一反三
不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为“类比教学”。
有经验的老師都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用,是一种既经济又实效的教学方法。例如正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,有的教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到学习一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓“麻雀虽小,五脏俱全”。再学习其他函数时,在此基础上类比学习,举一反三,触类旁通,循序渐进,螺旋上升。
数学的发展过程,实际上就是数学思想的发展过程,函数的教学体现了数学思想的发展过程,函数教学成功的好坏,直接影响学生的数学素养。
函数是中学数学中最重要的内容之一,它揭示了事物运动变化的规律和相互关系的本质,作为一条主线贯穿于中学数学的始终。初中阶段采用传统定义把函数看成变量之间的依赖关系,在教学中多采用学生熟悉的具体实例,引导学生认识其中的变量关系,在探索过程中,学生可以获得变量之间相互依赖关系的切身感受,由此体验函数关系的产生过程,为后面的抽象概念学习打下基础。怎样进行函数教学呢?笔者结合自己的教学实践谈一孔之见,以就教于方家。
一、弄清概念,回归生活
函数比较抽象,对于刚刚接触函数的初中生不是很容易理解。所以,在函数的教学过程中,我们要尽可能的利用简单易懂的语言。“函数”,是对两个变量而言,研究函数关系,就是研究两个变量之间的关系,两个变量之间不同的数量关系对应着不同的函数关系。
通过引导,学生是能够把生活中的实例和函数结合起来的。例如:在讲完了函数的入门知识后,给学生留一个“作业”:自己搜集数据资料,并通过所学到的知识,来分析这些数据,并通过分析的结果,提出新的问题。可以给几个参考:电费;水费;煤气费。这样的题目有点像应用题,但解决起来又比应用题更难。有的同学回家向家长要各种交费单据,有的同学则自己测量并收集数据。其中,有一个同学很出乎我的意料,他收集的是学校旁边的一个公共停车场的停车数量,每次下课的10分钟就看一次,并记下停车的数量,得出初步结论,并提出问题:“在一天的什么时间里,停车位最好找?”这个问题甚至我都没想过,虽然这并不完全符合函数的概念,但这个问题可以称为经典问题,这个学生的数学运用能力非常不一般。
二、整体思想,提纲挈领
整体思想是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用集成的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理等都是整体思想方法在解数学问题中的具体运用。例如:已知y+b与x+a(a,b是常数)成正比例,(1)试说明y是x的一次函数:(2)如是x=3时,y=5,x=2时,y=2,求y与x的函数关系式。解决这个问题(1)时,我们就要把y+b与x+a都看成一个整体,设y+b=k(x+a)得出y=kx+ak-b,从而说明y是x的一次函数,解决问题(2)时,当我们把握两组数值代入解析式y= kx+ak-b中后得到一个三元二次方程组,显然不能求出每个未知数的值,但我们可以把ak-b看作一个整体,就可以求出k=3, ak-b=4,从而求出y与x的函数的关系式是y=3x-4,在这个问题中两次运用到整体思想方法。
三、数形结合,化难为易
数形结合思想方法是数学中非常重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题,利用它可使复杂问题简单化,抽象问题具体化。
解析法、列表法、图象法等函数的表示方法本身就体现着函数的“数形结合”。函数图象就是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中需要注意以下几点:
首先,经历绘制函数图象的具体过程。对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。
其次,不急于呈现画函数图象的简单画法。在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;教师过早强调图象的简单画法,追求方法的“最优化”,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。
第三,把握研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。
四、比较分析,发现规律
有数学专家说,数学规律的得出不外乎几种方法:分析、归纳、比较等。对于函数学习而言,比较是一种比较好的方法,例如,如果两直线有交于某一点,则此点的坐标为两函数共同的解;如果两一次函数有共同解,则此解一定为两直线的交点等规律的发现,也可交由学生在比较中得出。
需要强调的是,在实际教学中作出这样的选择,有两个关键认识:一是从教学理念上,对于学生自己跳一跳、摘得到的知识点,一定要敢于放手,不能包办,而一个知识点是否属于这种性质,则需要教师结合自身教学经验,研究学生的实际情况,然后作出准确判断;二是要给足学生的时间与空间,因为学生的自主学习一定会出现许多意想不到的情况,所用时间一定大于教师讲授所用的时间,而学生在自学过程中,还有可能需要生生互动,需要下位交流等,这时教师都要给足学生自由。否则,自主学习的理念便不可能落实,自主学习就沦为形式主义了。
五、类比教学,举一反三
不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为“类比教学”。
有经验的老師都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用,是一种既经济又实效的教学方法。例如正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,有的教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到学习一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓“麻雀虽小,五脏俱全”。再学习其他函数时,在此基础上类比学习,举一反三,触类旁通,循序渐进,螺旋上升。
数学的发展过程,实际上就是数学思想的发展过程,函数的教学体现了数学思想的发展过程,函数教学成功的好坏,直接影响学生的数学素养。