论文部分内容阅读
陶行知先生说过:“好的先生不是教书,不是教学生,乃是教学生学。”如何让学生主动自学,培养他们的自学能力就显得尤为重要。近两年,随着课堂教学的不断改革,笔者在教学中探索了如下教学方法,以就教于方家。
一、重视学生预习方法的指导
为了提高学生的自学能力,教师必须在预习前把“钥匙”——自学的方法交给学生,让学生自己手执钥匙,去打开数学知识的大门,真正读懂教材。因此,预习方法的指导就显得尤为重要。
1.动手翻
针对新的学习内容,有计划地翻阅以前学过的课本,复习和新知识有紧密联系的旧知识,初步了解新旧知识之间的联系,为学习新知识做好充分的铺垫。例如,要学习“除数是一位数的笔算除法”时,那么就需要要求学生回忆学过的最基本的笔算除法和有余数除法。
2.动手画
预习新课时,要求学生对新课中的重要法则、概念、原理、定律以及不懂的地方做一些标志,便于课堂上的关注。
3.动手做
预习时要学生勤动手,对书上的实物、直观图、线段图、模型等动手做一做、画一画,从而培养自己的动手能力。
4.动脑想
在预习时要养成勤于动脑的习惯,能针对新知识提出一些有价值、有思考性的问题,并积极在课堂上进行探讨、分析。5.动笔练
要求学生能针对新知识,自己从课后的习题中选择一些和书上例题同等难度的或类似的习题来练一练(如书上的“做一做”),预习好的学生可以自己编题进行练习。
凡是自己在预习时已经把知识弄懂了,在课上议论时就要积极发言;凡是在预习时没弄懂的地方,在课上就要专心致志地听别人讲解。这样的预习教学,很容易调动学生学习数学的积极性和主动性,并进一步培养他们的自学能力。
二、重视学生质疑能力的培养
古人云“学贵知疑,小疑则小进,大疑则大进”,有疑问,才有学习的主动力。要让学生思考,必须教会学生质疑。在课堂教学中,教师要营造和谐的师生关系,积极鼓励学生敢想、敢疑、敢问,适时地提出经过精心设计的问题,巧妙地设疑,这样可以集中学生的听课注意力,使他们主动发现问题、解决问题。
1.明确教学目的,正确释“疑”生成问题
质疑是手段,释疑才是目的。面对学生的质疑,教师不要急于回答,更不能轻易否定。遇疑不慌、处疑不惊,不受课堂40分钟的时空限制,因疑引疑,设新疑释质疑,会收到比完成几道巩固作业更美妙的教学效果。例如,一位教师在教学“万以内笔算减法”的质疑问难环节中,一个学生突然举起手来:“老师,四位数的减法可不可以从高位减起?”面对学生提出质疑的问题,教师首先让大家猜一猜“从高位减起”是不是可行的,当学生的意见不一产生矛盾冲突时,教师为学生提供三道计算题作为新的探索材料。接着,教师耐心地等待大家的研究和探讨。在组织交流时,教师启发学生充分发表意见,其过程是循循善诱、步步到位,使学生经历了“猜想(假设)——论证——实践——结论”这样一个认知过程,体现了“最有价值的知识是关于方法的知识”。最后,教师通过问题“课本上为什么选择从个位减起”来小结,引导学生对两种方法进行比较,使学生认识到有些方法尽管是可行的,但由于操作繁琐、效率低下,一般是不可取的。这样教学,既使学生认识到这节课学习的收获和意义,又没有给质疑的学生留下一丝一毫的伤害痕迹。
2.要巧用矛盾,激发学生质疑兴趣
兴趣是最好的老师,学生只有对所学内容感兴趣,才能充分调动其积极性,打开其创新思维的闸门,积极进行探究,并不断提出问题。因而,教学中教师要千方百计激发学生质疑的兴趣。如教学“公因数和最大公因数”一课时,学生已有了公倍数和最小公倍数的学习基础,便可尽量引导学生自己提出问题,或者教师举例让学生思考“公倍数的个数是无限的,所以没有最大公倍数,只有最小公倍数,那么公因数你能发现什么结论吗”,然后再激发学生提问。强化学生质疑能力的培养,让学生带着疑问去听课,带着疑问去寻求解题的方法,对于培养学生的自学能力大有裨益。
三、重视学生自信心的培养
我在教学过程中,通过课前批阅学生的学习单,了解他们的预习情况。在课堂上用小黑板以问题的形式出示需要当堂课解决的疑难问题,运用自主、探究、合作的学习方式,让学生主动地、自觉地预习,积极动脑思考,树立学习的自信心。
例如,在教学“除数是整数的小数除法”时,我出示下面的问题让学生思考、讨论:(1)小数除以整数,商的小数点怎么处理?(2)整数部分不够商1怎么办?(3)学小数除以整数与我们以前所学的什么知识有联系?有什么联系?在小组讨论时,学生们紧紧围绕所提的问题,开展小组讨论,并大胆提出问题,自由发表意见。在课堂上可以看到这样的现象:功课偏差的学生提出问题,由功课好的学生给予耐心讲解,学力水平相当的则互相研究争论;时有小组来邀请教师参与他们的讨论,最后使意见趋于一致。因此,对于那些浅显的知识点,教师只需在自学讨论后引导学生将知识点条理化,巩固学习内容即可,这样既培养了学生的学习自信心,又有利于培养学生的自学能力、创新能力。
(责编蓝天)
一、重视学生预习方法的指导
为了提高学生的自学能力,教师必须在预习前把“钥匙”——自学的方法交给学生,让学生自己手执钥匙,去打开数学知识的大门,真正读懂教材。因此,预习方法的指导就显得尤为重要。
1.动手翻
针对新的学习内容,有计划地翻阅以前学过的课本,复习和新知识有紧密联系的旧知识,初步了解新旧知识之间的联系,为学习新知识做好充分的铺垫。例如,要学习“除数是一位数的笔算除法”时,那么就需要要求学生回忆学过的最基本的笔算除法和有余数除法。
2.动手画
预习新课时,要求学生对新课中的重要法则、概念、原理、定律以及不懂的地方做一些标志,便于课堂上的关注。
3.动手做
预习时要学生勤动手,对书上的实物、直观图、线段图、模型等动手做一做、画一画,从而培养自己的动手能力。
4.动脑想
在预习时要养成勤于动脑的习惯,能针对新知识提出一些有价值、有思考性的问题,并积极在课堂上进行探讨、分析。5.动笔练
要求学生能针对新知识,自己从课后的习题中选择一些和书上例题同等难度的或类似的习题来练一练(如书上的“做一做”),预习好的学生可以自己编题进行练习。
凡是自己在预习时已经把知识弄懂了,在课上议论时就要积极发言;凡是在预习时没弄懂的地方,在课上就要专心致志地听别人讲解。这样的预习教学,很容易调动学生学习数学的积极性和主动性,并进一步培养他们的自学能力。
二、重视学生质疑能力的培养
古人云“学贵知疑,小疑则小进,大疑则大进”,有疑问,才有学习的主动力。要让学生思考,必须教会学生质疑。在课堂教学中,教师要营造和谐的师生关系,积极鼓励学生敢想、敢疑、敢问,适时地提出经过精心设计的问题,巧妙地设疑,这样可以集中学生的听课注意力,使他们主动发现问题、解决问题。
1.明确教学目的,正确释“疑”生成问题
质疑是手段,释疑才是目的。面对学生的质疑,教师不要急于回答,更不能轻易否定。遇疑不慌、处疑不惊,不受课堂40分钟的时空限制,因疑引疑,设新疑释质疑,会收到比完成几道巩固作业更美妙的教学效果。例如,一位教师在教学“万以内笔算减法”的质疑问难环节中,一个学生突然举起手来:“老师,四位数的减法可不可以从高位减起?”面对学生提出质疑的问题,教师首先让大家猜一猜“从高位减起”是不是可行的,当学生的意见不一产生矛盾冲突时,教师为学生提供三道计算题作为新的探索材料。接着,教师耐心地等待大家的研究和探讨。在组织交流时,教师启发学生充分发表意见,其过程是循循善诱、步步到位,使学生经历了“猜想(假设)——论证——实践——结论”这样一个认知过程,体现了“最有价值的知识是关于方法的知识”。最后,教师通过问题“课本上为什么选择从个位减起”来小结,引导学生对两种方法进行比较,使学生认识到有些方法尽管是可行的,但由于操作繁琐、效率低下,一般是不可取的。这样教学,既使学生认识到这节课学习的收获和意义,又没有给质疑的学生留下一丝一毫的伤害痕迹。
2.要巧用矛盾,激发学生质疑兴趣
兴趣是最好的老师,学生只有对所学内容感兴趣,才能充分调动其积极性,打开其创新思维的闸门,积极进行探究,并不断提出问题。因而,教学中教师要千方百计激发学生质疑的兴趣。如教学“公因数和最大公因数”一课时,学生已有了公倍数和最小公倍数的学习基础,便可尽量引导学生自己提出问题,或者教师举例让学生思考“公倍数的个数是无限的,所以没有最大公倍数,只有最小公倍数,那么公因数你能发现什么结论吗”,然后再激发学生提问。强化学生质疑能力的培养,让学生带着疑问去听课,带着疑问去寻求解题的方法,对于培养学生的自学能力大有裨益。
三、重视学生自信心的培养
我在教学过程中,通过课前批阅学生的学习单,了解他们的预习情况。在课堂上用小黑板以问题的形式出示需要当堂课解决的疑难问题,运用自主、探究、合作的学习方式,让学生主动地、自觉地预习,积极动脑思考,树立学习的自信心。
例如,在教学“除数是整数的小数除法”时,我出示下面的问题让学生思考、讨论:(1)小数除以整数,商的小数点怎么处理?(2)整数部分不够商1怎么办?(3)学小数除以整数与我们以前所学的什么知识有联系?有什么联系?在小组讨论时,学生们紧紧围绕所提的问题,开展小组讨论,并大胆提出问题,自由发表意见。在课堂上可以看到这样的现象:功课偏差的学生提出问题,由功课好的学生给予耐心讲解,学力水平相当的则互相研究争论;时有小组来邀请教师参与他们的讨论,最后使意见趋于一致。因此,对于那些浅显的知识点,教师只需在自学讨论后引导学生将知识点条理化,巩固学习内容即可,这样既培养了学生的学习自信心,又有利于培养学生的自学能力、创新能力。
(责编蓝天)