论文部分内容阅读
视频运动目标的跟踪是一个典型的非线性、非高斯问题,粒子滤波是一个解决非线性、非高斯问题的主流方法,粒子滤波技术具有非线性等特性,在目标跟踪过程中得到了广泛的应用。传统粒子滤波跟踪算法的退化现象严重,经过几次迭代递推,权重方差随着时间推移而增大,为解决该问题引入均值漂移算法,调整初始粒子分布,使粒子集中于邻近的局部极大值区域内,以减少退化现象的发生。并且将颜色特征和边缘特征融合在粒子滤波跟踪算法中,在传统算法基础上提出改进,加入优化机制,使粒子的权值分布更加接近实际情况。实验结果表明了该算法的有效性。