克服思维定势 优化解题思路

来源 :数理化学习(高中版) | 被引量 : 0次 | 上传用户:wbgbg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
广大同学在运用二次方程(组)求解物理问题时,易形成思维定势,即:对所得的两个(组) 根,从数学、物理、实际生活等角度,对它们进行取舍.但是,是否必须要舍掉一个(组)根呢?若能从物理角度对两根仔细再分析,充分利用两根提供的信息,把握其物理本质,打破思维定势,定能使思路开阔;提高解题能力. 例1 如图1所示,电源电动势ε=12V,内电阻r=0.5Ω,定值电阻R1=3.5Ω,在电键S断开或闭合时,外电路中的αb间消耗的功率都是8W,则电键S闭合后通过R2的电流是_A. 解析:法1 根据两种情况下,αb间消耗功 When students use quadratic equations (groups) to solve physics problems, they tend to form a fixed mindset, that is, to make choices about the two (groups) roots obtained, and from mathematics, physics, and practical life, etc. However, Is it necessary to abandon one (group) root? If we can re-analyze the two carefully from the physical point of view, make full use of the information provided by the two to grasp its physical nature, break the mindset, will be able to open the mind; improve the solution Problem 1. Example 1 As shown in Fig. 1, the power EMF ε = 12V, the internal resistance r = 0.5Ω, and the setting resistor R1 = 3.5Ω, the power consumed between αb in the external circuit when the key S is opened or closed Both are 8W, then the current through the R2 after the key S is closed is _A. Resolution: Method 1 Under the two conditions, the power consumption between αb
其他文献
本文从小说中体现的女性形象、艺术表现手法两个方面讨论张爱玲小说的特色,即古今结合、中西杂揉,融古典于现代之中,由此呈现出作品独特的艺术魅力。 This article discusse
京派文学对生活的“超然”、“旁观”姿态并非意味着回避现实、超然世外。它要超越的是各种时髦、流行的旗帜、潮流,而超越的目的则是为了穿越表面的浮华,把握真实生活深处的
储蓄:储蓄的优点是安全可靠,随时可投资、可支取,缺点是目前收益率较低。
有一些简单优美的不等式,往往被忽视,其实很有用.请看 There are some simple and beautiful inequalities that are often overlooked and are actually very useful.
联想思维是一种重要的创造性思维方法.在数学解题实践中更是一种重要的思维方法.现例举如下: 例1 已知x/x2+x+1=a(a≠0,a≠1/2),求x2/x4+x2+1的值. Associative thinking i
苏洵并不是真正意义上的文学家,所谓唐宋八大家只是为了应举而推出的楷模。苏洵本想通过科举进入庙堂,可是一直到庆历七年(1047)遭父丧时,都没有成功。此后焚毁旧稿,“绝笔不
题目已知a、b、x、y∈R+,其中a、b为常数且a≠b,a/x+b/y=1, 求:u=x+y的最小值. 错解 The subject is known as a, b, x, y ∈ R+, where a, b are constants and a ≠ b, a
罗丹为众人对他的某作品中女人的美妙绝伦双臂所发出的由衷赞叹与关注 Rodin’s heartfelt admiration and concern for the wonderful arms of a woman in one of his wor
大家知道,许多房屋的屋顶为了便于泻水都建成“人”字形,但为什么倾角为45°时泻水最容易呢?这实际上是数学中的求极值问题. As we all know, the roofs of many houses are
和几位同窗曾讨论过一个问题:“有一个拐角为直角的胡同,一段胡同的宽为α,另一段胡同的宽为b,一渔民扛着一鱼竿通过,若假定此鱼竿只能在同一平面运动,不能翻转,则此渔民所拿