论文部分内容阅读
A new type of Ni-P alloy with rod-shape was prepared by electroless deposition method based on the shape of Nocadia, a kind of bacteria. The material was characterized by microbiological method, scanning elec-tron microscope, energy dispersion spectroscopy, transmission electron microscopy, fourier transform infrared spectroscopy, X-ray diffraction and vibrant sample magnetometer. It was found that Ni-P alloy deposited on Nocadia surface was amorphous when pH=8.0. The amount of Ni crystalline increased with pH of plating solution. Ni-P nano-particles deposited on active locations on the surface at the initial stage, and then ho-mogeneous Ni-P film formed with time. Nocadia remained their original rod shape after Ni-P nano-particles deposition. The new type metal material formed of Ni-P alloy with nano-particles was prepared. The mag-netization of the material prepared at pH=9.7 is greater than that prepared at pH=8.0. The magnetic loss of the material prepared at pH=9.7 is less than 0.1. The dielectric loss exceeds 0.3 when frequency is higher than 14 GHz, which is 1.5 at 18 GHz. The new type Ni-P metal material with Nocadia shape has dielectric loss property.
A new type of Ni-P alloy with rod-shape was prepared by electroless deposition method based on the shape of Nocadia, a kind of bacteria. The material was characterized by microbiological method, scanning elec-tron microscope, energy dispersion spectroscopy, transmission electron microscopy, fourier transform infrared spectroscopy, X-ray diffraction and vibrant sample magnetometer. It was found that Ni-P alloy deposited on Nocadia surface was amorphous when pH = 8.0. The amount of Ni crystalline increased with pH of plating solution. nano-particles deposited on active locations on the surface at the initial stage, and then ho-mogeneous Ni-P film formed with time. Nocadia remained their original rod shape after Ni-P nano-particles deposition. The new type of metal material formed of The mag-netization of the material prepared at pH = 9.7 is greater than that prepared at pH = 8.0. The magnetic loss of the material prepared at pH = 9.7 is less than 0. 1. The dielectric loss exceeds 0.3 when the frequency is higher than 14 GHz, which is 1.5 at 18 GHz. The new type Ni-P metal material with Nocadia shape has dielectric loss property.