论文部分内容阅读
针对现有深度卷积嵌入聚类算法(deep convolutional embedded clustering,DCEC)的网络特征损失过大,对复杂图像没有提取有效特征的问题,提出一个具有17层网络结构的无监督深度聚类框架,并在编码层加入下采样层,减少参数和防止过拟合;在解码层加入上采样层还原下采样造成的细节损失。分别结合DEC(deep embedded clustering)算法的损失函数和IDEC(improved deep embedded clustering)算法的采用局部结构保留优势的损失函数,