论文部分内容阅读
低秩矩阵补全的相关问题在机器学习、图像处理、视频去噪等领域受到极大关注,在假设数据低秩的情况下,使用矩阵补全可以估计缺失数据的值,得到满足约束条件情况下最接近目标矩阵的结果矩阵。然而,在加入非高斯噪声的情况下,目前大部分矩阵补全算法的鲁棒性并不理想。为了增加矩阵补全算法的鲁棒性并避免算法过拟合,讨论了几种较为经典的矩阵补全算法,并提出了一种新的鲁棒性矩阵补全方法。该算法可以识别异常值的位置并用近似数据替换异常数据,降低异常值对算法的影响,增加精确度。模拟数据和真实数据的实验结果均显示,该算法在处理数