【摘 要】
:
选取合理的初始聚类中心是正确聚类的前提,针对现有的K-means算法随机选取聚类中心和无法处理离群点等问题,提出一种基于相异性度量选取初始聚类中心改进的K-means聚类算法.算法根据各数据对象之间的相异性构造相异性矩阵,定义了均值相异性和总体相异性两种度量准则;然后据此准则来确定初始聚类中心,并利用各簇中数据点的中位数代替均值以进行后续聚类中心的迭代,消除离群点对聚类准确率的影响.此外,所提出的算法每次运行结果保持一致,在初始化和处理离群点方面具有较好的鲁棒性.最后,在人工合成数据集和UCI数据集上进行
【机 构】
:
昆明理工大学信息工程与自动化学院,昆明650500
论文部分内容阅读
选取合理的初始聚类中心是正确聚类的前提,针对现有的K-means算法随机选取聚类中心和无法处理离群点等问题,提出一种基于相异性度量选取初始聚类中心改进的K-means聚类算法.算法根据各数据对象之间的相异性构造相异性矩阵,定义了均值相异性和总体相异性两种度量准则;然后据此准则来确定初始聚类中心,并利用各簇中数据点的中位数代替均值以进行后续聚类中心的迭代,消除离群点对聚类准确率的影响.此外,所提出的算法每次运行结果保持一致,在初始化和处理离群点方面具有较好的鲁棒性.最后,在人工合成数据集和UCI数据集上进行实验,与3种经典聚类算法和两种优化初始聚类中心改进的K-means算法相比,所提出的算法具有较好的聚类性能.
其他文献
传统机器学习方法的有效性依赖于大量的有效训练数据,而这难以满足,因此迁移学习被广泛研究并成为近年来的研究热门.针对由于训练数据严重不足导致多分类场景下分类性能降低的挑战,提出一种基于DLSR(discriminative least squares regressions)的归纳式迁移学习方法(TDLSR).该方法从归纳式迁移学习出发,通过知识杠杆机制,将源域知识迁移到目标域并同目标域数据同时进行模型学习,在提升分类性能的同时保证源域数据的安全性.TDLSR继承了DLSR在多分类任务中扩大类别间间隔的优势
针对一类带有输入饱和特性的不确定非线性系统,为了在保证系统跟踪性能的同时最大限度节省系统通讯资源,结合Backstepping技术,提出一种自适应模糊触发式补偿控制方法.由于安全需求或者物理限制等因素,输入饱和特性往往不可避免地存在于实际物理系统中,给系统的控制性能和稳定性造成不利影响.为有效解决该问题,将光滑的双曲正切函数融入自适应控制设计过程,以实现对系统输入饱和约束的补偿.此外,由于实际系统模型难以精确建立,系统描述中难免会存在未知不确定部分,对此,利用模糊逻辑系统对系统的未知不确定部分进行逼近处理
应用于复杂场景下的行人再识别方法,常采用结合全局特征和局部特征的行人表示策略来提升模型的判别能力.但是,提取局部特征往往需要针对特定的语义区域设计专门的模型,增加了算法的复杂性.为解决上述问题,提出一种基于多尺度特征表示的行人再识别模型.该模型通过对不同细粒度局部特征与全局特征的联合表示,得到多层次具有互补性的判别信息,端对端地完成行人再识别任务.为了在获取高区分度信息的同时保留更多的细节信息,采
工业过程多变量、数据高维度和非线性的特点使得对其质量监测及质量相关的故障诊断变得复杂.融合核熵成分分析(KECA)及典型相关分析(CCA)方法的思想,进行特征提取降维的同时确保所提取特征与质量变量的最大相关性,提出一种新的质量相关的工业过程故障检测方法.首先,采用KECA对输入数据进行核空间的映射及特征提取,同时融合CCA算法思想使得所提取特征与质量变量间关联最大化;然后,构建监测统计量并用Parzen窗估计其控制限,用于过程的故障检测;最后,运用所提方法对带钢热连轧工业过程实际生产数据进行分析,并与其他
传统动力下肢假肢运动意图识别算法常使用机器学习算法分类器,在特征选择方面则需要手工提取.针对该问题将深度学习算法应用于运动意图识别研究中,通过在传统的卷积神经网络的基础上进行改进,使算法更适应于基于短时行为样本数据的运动意图识别,同时抑制深度学习算法应用于运动意图识别中的过拟合.在意图识别数据集中进行滑动窗口预处理,目的是对时间序列样本做数据增广,扩增目标数据集能够使训练集更加丰富全面,提高识别的精度,运用改进后的卷积神经网络对增广后的数据集进行特征学习与分类.实验结果表明,该方法在13类运动模式下的识别
针对利用无线传能技术对移动无人单元进行动态传能的需求,选取微波无线传能作为传能方式.考虑在无线传能发射端与接收端之间设置中继传能节点的必要性,以及因无人单元连续移动所导致的无线传能链路的动态性,基于这类动态链路上采用不同中继传能节点部署方案所带来的在传能效率、系统成本等指标上的变化,构建一个包含发射端、接收端和可移动能量中继平台的动态无线传能链路多目标规划模型,在此基础上根据决策变量的特点,采用两种不同的进化算法对动态无线传能链路多目标规划模型进行双层迭代求解.求解结果验证了模型的有效性和微波能量中继传输
为了准确地求解组合权重的组合系数,将基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)思想引入评估领域,提出一种基于MOEA/D的组合权重方法.通常,利用加权和法将组合权重模型转化为单目标模型时,模型加权系数难以准确确定.对此,引入MOEA/D算法的分解思想,将组合权重模型转化为多个单目标子模型.MOEA/D算法仅适用于无约束优化问题,而较为常用的惩罚函数法难以表达进化初期无可行解的情况,因而
建立了高效液相色谱-串联质谱法(HPLC-MS/MS)测定电子烟烟液及气溶胶中4种烟草特有N-亚硝胺类化合物(TSNAs)[包括N-亚硝基去甲基烟碱(NNN)、N-亚硝基假木贼碱(NAB)、N-亚硝基新烟草碱(NAT)和4-(N-甲基-N-亚硝胺)-1-(3-吡啶基)-丁酮(NNK)]含量的方法.取1 g电子烟烟液,加入0.1 mol·L-1乙酸铵溶液20 mL及4 mg·L-1混合内标溶液50μL,超声萃取30 min后,经0.2μm聚四氟乙烯(PTFE)滤膜过滤后进样.将在最大功率下抽吸20口电子烟释
针对移动机器人路径规划问题,提出一种基于正态概率区间分族的家族遗传蚁群融合算法.首先提出初始种群优化及删除算子解决传统遗传蚁群融合算法中遗传阶段随机生成的初始种群质量低的问题;然后引入适应度值正态概率区间种群分族机制及家族混合交叉算子,解决传统遗传蚁群融合算法中易出现未成熟收敛的问题;最后引入混合变异策略以提高随机变异后生成的路径质量.将全局路径规划算法与局部路径规划算法-动态窗口算法相结合形成完
利用提升技术可将非均匀采样非线性系统离散化为一个多输入单输出传递函数模型,从而将系统输出表示为非均匀刷新非线性输入和输出回归项的线性参数模型,进一步基于非线性输入的估计或过参数化方法进行辨识.然而,当非线性环节结构未知或不能被可测非均匀输入参数化表示时,上述辨识方法将不再适用.为了解决这个问题,利用核方法将原始非线性数据投影到高维特征空间中使其线性可分,再对投影后的数据应用递推最小二乘算法进行辨识,提出基于核递推最小二乘的非均匀采样非线性系统辨识方法.此外,针对系统含有有色噪声干扰的情况,参考递推增广最小