论文部分内容阅读
多目标遗传算法(MOGA)是求解多目标优化问题的有效工具,因而在求解实际问题中得到越来越广泛的应用。PCA是一种基于二阶统计的最小均方误差意义上的最优维数压缩技术,PCA方法所抽取特征的各分量之间是统计不相关的。在人脸识别的实际应用中,将多目标遗传算法引入到PCA所生成的特征空间的优化中,提出基于双重特征空间的人脸识别算法。通过对剑桥ORL库实验表明,该方法与传统的PCA相比,识别率得到明显提高。