Apriori性质相关论文
基于位向量的关联规则挖掘算法是一种通过使用更简单的数据结构--位向量,结合Apriori性质,直接搜索所有子项集的算法。该算法利用了......
针对已有的对低支持度关联规则进行挖掘的算法中没有提出对具有多个相关项的关联规则进行挖掘的有效方法,本文提出一种能够对低支......
文章提出了一种基于位图矩阵技术和Apriori性质的多维关联规则改进算法.该算法利用位图矩阵技术降低扫描数据库的开销,应用Apriori......
序列模式挖掘是从给定序列中发现出现频率高的模式的一种方法,目前已在诸多领域被广泛应用.假定子模式Pi和Pj(i〈j)可以分别匹配事件A......
该算法结合项集的有序特性有效压缩了频繁项集的数量,提高了算法效率,但是频繁2-项集的产生仍需要占用大量的存储空间,本文利用散......
数据立方体是数据仓库中数据组织和存贮的重要手段,它采用多维立体数据存贮方式来取代传统的平面数据存贮方式,为进行多维数据分析......
现有的关联规则更新算法大多致力于解决增量更新本身,但很少同时考虑更新时机,不适于对实时应用中频繁更新的数据进行有效处理。针......
Apriori算法是一种找频繁项集的基本算法,它常常被用于单维关联规则的挖掘,本文在对数据立方体的组织结构以及Apriori算法包括它的......
介绍频繁项集的概念及其性质,把最大频繁项集作为聚类的依据,提出一种基于最大频繁项集的聚类算法,将关联分析与聚类分析相结合,在聚类......