半无穷区间相关论文
现代科技处于高速发展的阶段,微分方程边值问题被应用于越来越多的学科,比如流变学,流体的流动,电力网络,黏弹性,化学物理,电子分析,生物学......
微分方程是以方程描述未知的函数与其导数之间关系的一种形式。微分方程在数学及其应用中的意义在于:许多实际中的物理与技术问题的......
讨论了一类带P-Laplacian算子的三阶微分方程在半无穷区间上m点边值问题多个正解的存在性,运用Leggett-Williams不动点定理结合相......
研究了一类半无穷区间上含有积分边界条件的二阶微分方程Sturm-Liouville边值问题多个正解的存在性,利用Leggett-Williams不动点定......
考虑一类具有 Caputo 导数的分数阶非线性微分方程在半无穷区间上的边值问题,用Schauder 不动点定理和 Leggett-Williams 不动点定......
摘要:为了解决对半无穷区间上具有可数个脉冲点且带有积分边界条件的分数阶脉冲微分方程边值问题,具体研究此类微分方程边值问题解的......
运用Leray-Schauder型非线性抉择定理,讨论了一类在半无穷区间上的分数阶边值问题,从而得到该问题无界解存在性的充分条件.......
<正>In this paper we propose a spectral element: vanishing viscosity (SEW) method for the conservation laws on the semi-......
为了解决在半无穷区间内含有的可数脉冲点且带有边界条件的微分方程的边值问题,需要对半无穷区间内高阶微分方程边值问题解的存在性......