不动点定理相关论文
本文研究了几类分数阶常微分方程边值问题的可解性,主要由三部分组成.第一部分运用Banach压缩映射原理和Schaefer不动点定理研究如......
b-距离空间是比距离空间更广泛的空间框架,这类空间中的不动点定理是空间理论研究的重要方向.本文通过六部分内容的研究,完全解决......
利用不动点定理和向量形式的Gronwall不等式,得到了Caputo分数阶导数定义下的非线性隐式分数阶微分方程耦合系统解的存在性和唯一......
函数方程的稳定性问题起源于Ulam提出的关于群同态稳定性的问题.Hyers在Banach空间部分的回答了Ulam的问题.本论文在矩阵–范空间......
脉冲微分方程是一类有着广泛应用的数学模型.近年来,有关脉冲微分方程的理论研究取得了极大进展,特别是解的定性理论研究(包括周期......
利用一个新的锥不动点定理,研究含有各阶导数四阶两点边值问题{x(4)(t)+Ax’’(t)=λf(t,x(t),x’(t),x’’(t),x’’’(t)),0......
丰要利用算子半群、分数幂算子及线性发展系统的理论与方法,借助不动点定理研究了具有状态相依无穷时滞的中立型泛函微分系统及半......
本文共分两个部分。第一部分研究集值型映射的Caristi型不动点定理,第二部分讨论滞后型泛函微分方程正周期解的存在性。 不动点......
本文讨论了两类混合单调算子,运用迭代技巧得到了新的不动点定理,并把它运用到非线性积分方程及非线性分数阶微分方程中.本文内容......
非线性算子的不动点理论是非线性泛函分析的重要组成部分,同时非线性算子方程解的迭代逼近问题也成为非线性泛函分析领域近年来研......
分数微积分理论是数学分析的一个新的分支,专门研究函数的任意阶微分和积分的非标准的算子理论及其应用.尽管分数阶积分和分数阶导......
近年来,随着科技的发展,分数阶微积分这一领域引起了人们广泛的关注,并且迅速的发展起来。分数阶微积分就是将传统意义下的整数阶微积......
分数微分方程在许多学科领域有重要的应用.最近十多年来,分数微分方程的研究发展迅速.虽然分数常微分方程边值问题已有许多结果,但......
诸如粘弹性,电化学,控制论,多孔介质,电磁学等非线性领域的模型很多可以转化为半线性泛函微分方程。因此,这类方程近来受到了广泛......
脉冲微分方程理论是微分方程理论中的一个十分重要新分支,它具有深刻的物理背景和数学模型。近年来,这一理论在应用数学领域中已取得......
对于线性二阶常微分方程多点边值问题的研究是由Il’in和Moiseev首先开始的。Gupta研究了一类非线性常微分方程三点边值问题。此后......
非线性泛函分析是数学中既有深刻理论又有广泛应用的研究学科,以数学和自然科学中出现的非线性问题为背景,建立了处理非线性问题的若......
随着科学技术,近代物理学和应用数学的不断发展,各种各样的非线性问题日益涌现.这些非线性问题日益引起了人们的广泛重视,极大的促......
微分方程组理论是微分方程理论的一个重要分支,它所呈现出来的结构具有深刻的物理背景和现实意义,具有重要的的研究价值和研究意义......
分数阶微分方程是常微分方程的一个重要分支.近年来,因其自身理论体系的不断完善以及与许多实际应用(如:物理学、机械力学、化学和工......
随着科学技术的不断发展,各种各样的非线性问题已引起人们的广泛关注,因其能很好的解释自然界中的各种各样的自然现象,非线性泛函......
随着科学技术的不断发展,各种各样的非线性问题已日益引起人们的广泛关注,非线性分析已成为现代数学中的重要研究方向之一,而非线......
随着科学技术的不断发展,在物理学、化学、数学、生物学、医学、经济学、工程学、控制论等科学领域出现了各种各样的非线性问题,这......
非线性分析是现代数学中一个既有深刻理论意义,又有广泛应用价值的研究方向.它以数学及自然科学各个领域中出现的非线性问题为背景......
随着科学技术的不断发展,各种各样的非线性问题引起了人们的广泛关注,因其能很好的解释自然界中的各种各样的自然现象,非线性泛函......
近几十年里,在一些现实生活问题中,分数阶模型问题往往比整数阶模型更加适用.分数阶微分方程对于刻画记忆和遗传性质的材料和过程......
时滞项方程在物理学和控制论中有广泛的应用(见文献[1]-[3]),同样带时滞项的边值问题在很多领域也有重要的作用(见文献[4]-[6]).近年来......
作为变分不等式的一类重要推广,半变分不等式已是非线性分析和非光滑分析的重要组成部分,被广泛应用于力学、工程等实际问题。发展......
本文引进和研究了如下动态规划中提出的多阶段决策过程的一类泛函方程其中λ,μ∈[0,1]是常数且满足λ+μ≤1和m∈N,opt代表上确界......
常微分方程边值问题源于应用数学、物理学和控制论等应用学科,因此,边值问题的研究具有重要的理论意义和应用价值。随着科学技术的......
非线性微分方程边值问题在物理学、应用数学、控制论、航天、生物学等领域中有着广泛的应用.因此,对非线性微分方程边值问题正解存......
定常非对称流动问题有着很重要的物理力学背景,已经在一些文章中给过这方面的综述,并且有些文章对该问题进行了严格的数学分析,得到了......
分数阶微分方程边值问题是从大量自然科学和工程技术问题中抽象出来的,在诸如流体力学、材料力学、天文学、经济学、生物学、医学......
同态是数学中一个非常重要的概念,在很多领域中都会涉及到.通常,可以用一个方程的解来刻画同态.如果一个映射近似满足方程的话,那......
近年来,由于在气体动力学、流体力学、边界层理论、非线性光学等应用学科的研究中具有较高的实用价值,微分方程奇异周期边值问题逐......
本文对弹性梁方程边值问题进行了讨论。首先对简支梁问题给予较为详细的研究,其次对悬臂梁问题也作了一些探讨。 常微分方程边值问......
本文主要考虑了非标准增长条件下的几类非线性抛物方程解的性质.这类问题来源于具有丰富物理背景的电子流变流体学、非线性弹性力......
常微分方程边值问题是常微分方程理论的一个重要研究领域,物理、化工、医学。天文、生物工程的学可中的实际问题,都可以归结为常微分......
本文主要对一类带拉普拉斯算子的非线性常微分方程边值问题正解的存在性进行研究,并针对同一类问题使用不同的方法首先,通过等价转......
微分包含是非线性分析理论的重要分支,它与微分方程、最优控制及最优化等其他分支有着紧密的联系.微分包含周期解的存在性和可控性......
微分包含又称为多值泛函微分方程,是非线性分析理论的一个重要分支.随着集值分析理论和微分包含理论的逐步完善,可控性和优化控制......
本文研究了两类具体含逐段常变量微分方程的伪概周期解的存在性问题和一类一阶微分方程组的数值解。全文由如下三部分组成:第一章......
本文研究了几类具体泛函微分方程周期解,概周期解以及伪概周期解的存在性问题。全文由如下四部分组成:第一章简要地介绍了逐段常变量......
本文主要讨论了几类时滞反应扩散方程的周期解、平衡态解的存在唯一性及解的渐近行为,最后研究了一类二阶时滞格微分方程行波解的......