回归点集相关论文
拓扑动力系统是指在拓扑空间上的一个单参数同胚变换群,在20世纪初G.D.Birkhoff等人提出了这一理论。其应用范围涉及到经济学、物理......
本文就给定的度量空间上的连续映射与由其诱导的集值映射的回复性点集之间的关系进行了一些探讨,得到了一系列重要的结果。在第一章......
在拓扑空间中,当f是同胚时,证明了回归点集R(f)、非游荡点集Ω(f)、终于周期点集EP(f)、几乎周期点集AP(f)是强不变集.......
周期点集、回归点集、ω-极限集是动力系统中几个重要概念点集,回归点集、ω-极限集、非游荡点集的概念都是在周期点集概念的推广下......
主要将实线段上连续自映射的终于周期点推广到了度量空间.在一般度量空间到终于周期点集一些性质,并且讨论了终于周期点集与周期点......
若f是可降的n维自映射,则可利用可降映射的特征,给出这类n维自映射是2∞型映射的又一充要条件,-R(f)/R(f)为可数集.......
令f是区间I=[0,1]上的连续自映射,h(f)=0,Λ(f)=R(f),则f为混沌的充要条件是存在x∈R(f)-P(f),使序列{f2n(x)}∞n=0有两个极限点;......
连续自映射的极限点集、回归点集、准周期点集、渐近周期点集等都是拓扑动力系统在研究周期轨时所要研究的重要内容之一。近些年来......