束缚态解相关论文
本文采用变分方法主要研究了非线性Schr(?)dinger-Bopp-Podolsky系统和分数阶Schr(?)dinger-Poisson系统束缚态解的存在性.本文分为四......
本文利用变分方法证明了非线性临界Kirchhoff型问题的正基态解的存在性以及外区域上的带分数Laplace算子的非局部问题的正基态解和......
学位
近年来,分数阶微分方程广泛地运用于物理,化学,博弈论,最优控制,图像处理和金融数学等众多领域,对这类方程相关问题的研究自然成为......
本文主要研究两类含有非局部项的椭圆型偏微分方程(包括基尔霍夫方程和薛定谔-泊松系统)解的存在性和多解性,其中对于基尔霍夫方程主......
本文主要研究几类奇异扰动的椭圆型偏微分方程.本文共分为四章:在第一章中,我们将对本文研究问题的背景和国内外关于奇异扰动椭圆......
精确求解一直是非线性偏微分方程研究的重点乃至难点,而耦合多分量可积方程的求解问题更是研究孤立子理论的热点内容.本文主要研究......
在本文中,主要研究非线性椭圆方程组解的存在性以及解的部分对称性质. 首先,考虑下面带有线性耦合项和非线性耦合项的薛定谔方程......
本文研究p-Laplacian型非线性椭圆问题:的束缚态解的存在性,其中Ω是RN上的一个区域(可能无界),其边界光滑或者为空,ε是一个正数,f∈C1......
应用Nikiforov—Uvarov方法求解了一类新型非中心势的Dirac方程的束缚态.在标量势等于矢量势的条件下,得到了Dirac方程的能量解析表......
本文研究如下分数阶Schrödinger-Poisson系统...