基态解相关论文
本文主要利用变分法研究几类具有深刻物理和生物背景的非局部方程解的存在性、多解性以及唯一性,并分析了解的性质.本文主要分为以......
近年来,具有物理学背景的偏微分方程及方程组在数学界引起广泛关注,众多数学和物理工作者对非线性椭圆方程及方程组的解的存在性、......
本文主要研究具有临界指数的椭圆方程解的存在性与动力学性质。首先,我们研究具有临界指数的非线性标量域方程基态解的存在性;其次,我......
本文主要研究RN中两类带有多重临界指标和多个奇异点的半线性椭圆方程组.首先在引言部分,我们介绍了本文将要研究的两个方程组及相关......
本文中,我们主要运用变分法研究了如下Chern-Simons-Schrodinger系统:其中对于x=(x1,x2)∈R2,(?),对于j=0,1,2,Aj:R2→R是规范场,A∈R,......
在本文中我们讨论了几类没有Ambrosetti-Rabinowitz(AR)条件的Kirchhoff问题解的存在性.首先,我们研究了如下的Kirchhoff问题其中Ω(?......
本文主要研究下列Chern-Simons-Schr(?)dinger系统其中ε是一个小参数且大于0,V是外部位势,(?)((x1,x2)∈R2),Ai(i=0,1,2)是规范场,f是超线性......
本文主要研究了如下Schrodinger-Korteweg-de Vries系统:其中N≤3,β∈R,且Vi(x)是位势函数,i=1,2.当Vi(x)为不同函数时,利用变分法,我......
本文主要研究如下Chern-Simons-Schr(?)dinger系统(?)其中(?),(?),x=(x1,x2)∈R2,Aj:R2→R,(j=0,1,2)是规范场.Vλ(x)=λV(x)+1,λ>0,f为非线性项.......
随着科学技术的不断发展,各种各样的非线性问题越来越引起人们的广泛关注,而非线性泛函分析是数学中的一个重要分支,因其能很好的......
随着科学技术的不断发展,人们对各种各样的非线性问题关注越来越多.非线性分析已成为现代数学中的重要研究方向之一,而各种非线性......
在过去十几年中,由于强大的物理背景,非线性薛定谔系统吸引了一大批学者的关注。其中,波色-爱因斯坦凝聚态(BEC)问题尤为突出。在科......
Choquard型薛定谔方程是一类重要的椭圆型偏微分方程,它不仅在数学领域有着重要的理论意义,也在物理学中有着广泛的应用。近些年,......
变分方法是非线性泛函分析最重要的方法之一.它的基本思想是把非线性算子方程的求解问题归结为相应的泛函临界点问题,在数学、物理......
本文利用变分方法研究了 Schr(?)dinger-Possion系统和Choquard方程解的存在性,这两类方程在量子力学、半导体理论等领域有广泛应用......
发展方程描述物理学及其他科学领域中随时间演变的状态或过程,是依赖于时间变量的许多重要的偏微分方程的统称.许多描述复杂现象的......
本文主要研究下述系统解的存在性问题,(?)(-△)s 是分数阶 Laplace 算子,02s,β∈R.Ω 是RN上的光滑有界开集,λ1,s(Ω)是((-△)s,H0s(Ω))的第......
本文主要研究以下带有临界指数的椭圆方程与分数阶方程耦合系统的解的存在性问题:(?)其中,(-△)s 为分数阶 Laplace 算子,s∈(0,1),Ω∈R......
学位
摘要:本文在相应的能量空间中讨论了几类带调和势的非线性Schrodinger方程.我们的主要思想是以Cauchy问题的局部适定性为基础,通过......
本文利用变分方法证明了非线性临界Kirchhoff型问题的正基态解的存在性以及外区域上的带分数Laplace算子的非局部问题的正基态解和......
学位
本文在能量空间中研究了带势的非线性Schr(o|¨)dinger方程爆破解的动力学性质.首先,在R2空间中,考虑带势的立方非线性Schr(o|¨)dinge......
本文主要应用变分法和临界点理论研究了几类零质量Kirchhoff型方程非平凡解的存在性和多重性.主要内容如下:第一章主要介绍Kirchho......
Schr(?)dinger-Poisson系统是物理学中被用来描述量子力学和半导体理论的基本方程,根据经典的物理模型,电荷粒子和电磁场的相互作用......
拟线性Schrodinger方程作为一类重要的非线性偏微分方程,在量子力学、流体学等领域起到很重要的作用.Choquard方程描述了电磁波在......
学位
本文主要研究定义在RN上的两类非线性Schr(?)dinger方程组和一类四次非线性Schr(?)dinger方程normalized解的存在性及其轨道稳定性,其......
本文主要研究三类非线性Schrodinger方程多重驻波解的存在性.其中一类是含有势阱的半线性Schrodinger方程,另外两类是拟线性Schrod......
变分法是非线性泛函分析中重要的基本方法之一.它的基本思想是把微分方程解的问题归结为相应泛函的临界点问题.本文利用变分法主要......
本文利用变分方法研究分数阶Schr(?)dinger-Poisson系统基态解和多重解的存在性以及非线性Schr(?)dinger-Bopp-Podolsky系统多重解的存......
本硕士论文通过变分方法讨论了一类带有不定权函数的薛定谔方程正解的存在性和多解性以及一类带有p-Laplacian算子的超线性椭圆方......
本文研究三类全空间上半线性微分方程解的存在性及多重性问题.本文由四章组成.第一章,阐述本文的研究背景和简要介绍本文的主要工......
在本文中,我们主要分析了以下具有三波相互作用的非线性分数阶Schr(?)dinger方程组第一章给出了Schr(?)dinger方程(组)的相关背景、主要结......
本文运用变分法与一些分析技巧研究了 Klein-Gordon-Maxwell系统无穷多解的存在性,基态解的存在性,解的多重性以及解的渐近行为.Kl......
本博士学位论文应用变分法和临界点理论研究了Schrodinger-Maxwel1系统解的存在性和多重性.全文由五个部分构成.第一章简述问题研......
本文主要研究了如下一类带有扰动项的对数Schr(?)dinger方程一Δu+λV(x)u=ulogu2+f(u),x ∈ RN,其中λ>0,N>1,V:RN→R是位势函数,......
本文旨在使用变分方法研究带次临界增长、临界增长和超临界增长的一般拟线性薛定谔方程.在位势函数和非线性项满足适当的条件下,我......
本学位论文主要研究带有质量约束的非线性Schr(?)dinger方程:其中N≥1,f∈C(R,R),m>0是给定的常数,μ∈R作为Lagrange乘子出现.在第一......
设Ω是RN(N≥ 2)上带有C1,1边界(?)的有界区域,Ω1是Ω的一个子区域,(?)Ω也具有C1,1边界,令(?)是连通的.显然有(?)本文我们将采用非线性泛函......
本文我们主要研究基尔霍夫椭圆方程.首先,我们考虑下列基尔霍夫椭圆方程其中Δ2=△(△)为双调和算子,a,b>0为常数,V∈ C(R3,R).在合理......
本硕士论文运用变分法研究了两类Schr(?)dinger-Poisson系统基态解的存在性,共包括四章内容:第一章,首先简单介绍了本文所研究的两类......
本文主要研究几类典型的非局部椭圆型方程与方程组解的存在性、多解性以及解的性态等.全文共分五章:在第一章中,我们先概述本文所......
本文主要研究含Sobolev临界指数的Kirchhoff-型方程、Gross-Pitaevskii方程规范化解的存在性与渐近性,带有Hardy项的双临界分数次L......
为了得到多方面的全局结果,扰动的出现在一些椭圆问题上显得尤为重要。这促使我们用临界点理论中的摄动方法来处理几个问题,这些理......
本文主要研究R3上Kirchhoff方程和Kirchhoff系统解的存在性和渐近行为.主要工作分为以下四个部分.首先,考虑一类 Kirchhoff 方程的......
本文研究了以下一类带有一般非线性项的临界增长Kirchhoff型问题的正解的存在性,其中a,b>0是常数.在对位势函数V(x),权函数Q(x)和f......
本文主要讨论了Rn(n≥3)上如下一类p-Laplace方程:在V(x)和K(x)满足一定的可积性与有界性条件下,运用Nehari流形技巧和位势能量的弱......
本文研究了一类带有强耦合Hardy项的临界椭圆方程组解的相关性质,内容共分为四个章节.第一章,介绍了本文研究的问题及其背景,并给......
本文主要对几类弱耦合的NLS-KdV方程组解的存在性及其性质问题进行研究。一方面,利用变分方法证明了NLS-KdV方程组、NLS-KdV-KdV方......
非局部问题解的存在性及解的性态分析是近年来非线性分析领域的研究热点,本文主要利用变分方法研究了带有竞争位势的分数阶Schr?di......