稳定同伦群相关论文
球面稳定同伦群π*S的计算一直是同伦论中的一个中心问题,计算它的最主要工具是Adams谱序列,其E2项E2s,t ≌ Exts,(Zp,Zp)(?)πt-s......
在利用Adams谱序列求解同伦群的过程,需要计算有关Ext(HX,HY)的结果.该文是利用谱的上纤维序列导出的Ext群的正合序列和May谱序列......
在第一章中,讨论了May谱序列E1项E=E(h|i>0,j≥0)(×) P(b)i>0,j≥0)(×) P(a|i≥0)在某些特殊维数和次数时的具体生成元情况.并由......
球面稳定同伦群的计算是代数拓扑学的中心问题之一,计算它利用的工具主要有经典的Adams谱序列(ASS){Ers,t,dr},其中E2s,t≌ExtAs,t(Zp......
A是mod P Steenrod代数(p为素数),S为P局部化的球谱.A为A的对偶,P表示A的由循环缩减幂p(i≥0)生成的子代数.球谱同伦群的计算是代数拓......
球面稳定同伦群的计算是代数拓扑中同伦论的中心问题,也是长期以来比较困难的数学问题之一。设A是mod p Steenrod代数(p为素数),S......
球面稳定同伦群的计算一直是代数拓扑中的一个重要问题,计算它的主要工具是Adams谱序列.令A为模p Steenrod代数(p为奇素数),S为球谱,V(0......
本文利用代数拓扑中的Adams谱序列、Thom谱以及B-配边理论等知识给出高维稳定同伦群πs2n(Mξ(n,d)∧MBO)进而研n究1稳)定n元的计......
利用Adams谱序列和May谱序列,发现了Smith-Toda谱V(1)的稳定同伦群中的一个非零元素,此元素在Adams谱序列里由h0b31表示.......
证明了在Adams谱序列中存在永久循环元hob41,且可收敛到稳定同伦群π其中V(n)是Toda-Smith谱.进而,利用Yoneda乘积,证明了在Adams......
本文研究了球面稳定同伦群中元素的非平凡性.利用May谱序列,证明了在Adams谱序列E_2项中存在乘积元素收敛到球面稳定同伦群的一族......
计算了Dykin图为An的李代数的正根系上同调的一些非零直和项.首先列出了R6的全部权子复形,然后利用链同构关系的相关定理对权子复......
当p≥7,n ≥ 3时,本文找到一个永久循环(φhn)″=φ'*(hn)′∈Ext2,pnq+2q-1A(H*L∧K,H*K),它在Adams谱序列中收敛到[∑pnq+2q......
首先给出了May谱序列E1^s,t,u项的几个结果,然后利用这些结果和关于ExtP^s,t(Zp,Zp)的一个估计(P为由mod p Steenrod代数A的所有循环......
对连通有限型谱X,Y,存在着Adams谱序列(ASS){Ers,t,dr}满足(1)dr:Ers,t→Ers+r,t+r-1是谱序列的微分,(2)E2s,t≌ExtAs,t(H*(X),H*(......
设奇素数p≥11,q=2(p-1),A为模p的Steenrod代数.证明了在Adams谱序列中,b1k0∈ExtyA^4,p2q+2pq+q是永久循环且不是dT边缘,从而收敛到π*V(1)中......
考虑V(1)谱的同伦群.首先借助May谱序列得到V(2)谱的上同调群的一些结论,然后用代数方法证明了在Adams谱序列中,(b1)^2g1∈ExtA^6,3p^2q+2......