May谱序列相关论文
令A为模p的Steenrod代数(p为奇素数),S为p局部化的球谱,P为由所有A的循环缩减幂pi(i≥0)生成的子代数.谱V(n)及球谱的同伦群的计算......
球面稳定同伦群在代数拓扑中有很重要的地位.计算它的主要工具是Adams谱序列.对连通有限型谱M,N来说,存在着Adams谱序列{Erst,dr}......
球面稳定同伦群π*S的计算一直是同伦论中的一个中心问题,计算它的最主要工具是Adams谱序列,其E2项E2s,t ≌ Exts,(Zp,Zp)(?)πt-s......
1981年,R.L.Cohen构造了一族球面同伦元素ζk∈π凡(S)该元素在Adama谱序列中由hObk∈ExtA3,2(p-1)(pk+1+1)(Z/p,Z/p)所表示,这里p......
在该文,我们利用两种不同的方法找到了新的非零元素族.一种方法是我们称之为"几何"方法,另外一种我们称之为"代数"方法.在该文,我......
在利用Adams谱序列求解同伦群的过程,需要计算有关Ext(HX,HY)的结果.该文是利用谱的上纤维序列导出的Ext群的正合序列和May谱序列......
在第一章中,讨论了May谱序列E1项E=E(h|i>0,j≥0)(×) P(b)i>0,j≥0)(×) P(a|i≥0)在某些特殊维数和次数时的具体生成元情况.并由......
对Toda-Smith谱V(1),Adams谱序列(ASS){Es,tr,,dr}的E2-项:Es,t2,t(≌)Extst,A(H*V(1),Zp)(→)πt-sV(1)dr:Es,tr,t→Es+r,t+r-1r,是谱序......
球面稳定同伦群的计算是代数拓扑学的中心问题之一,计算它利用的工具主要有经典的Adams谱序列(ASS){Ers,t,dr},其中E2s,t≌ExtAs,t(Zp......
对连通有限型谱X,Y,存在着具有滤子的Adams谱序列(ASS).{E,d}满足: (1) 是谱序列的微分(2)(3)并且收敛到即当Y是球谱S时,上式变成了当X......
A是mod P Steenrod代数(p为素数),S为P局部化的球谱.A为A的对偶,P表示A的由循环缩减幂p(i≥0)生成的子代数.球谱同伦群的计算是代数拓......
球面稳定同伦群的计算是代数拓扑的中心问题之一,目前主要的计算方法是经典Adams谱序列,其E项为Steenrod代数的上同调,而Steenrod代数......
球面稳定同伦群的计算是代数拓扑中同伦论的中心问题,也是长期以来比较困难的数学问题之一。设A是mod p Steenrod代数(p为素数),S......
本文主要计算了May谱序列E2-项Es,t,M2M(4,2)的1,2,3维,并证明在这些元素中不存在非平凡的高级May微分,而且Es,t,*2(4,2)()K(4),[v5]是π*(L4T......
本文将计算Morava稳定化子代数S(3,1)在以特征p=5的素域为系数时的上同调。
......
1981年,R.L.Cohen构造了一族球面同伦元素ζk∈π*(S).该元素在Adama谱序列中由h0bk∈Ext3,22(p-1)(pk+1+1)A((Z)/p,(Z)/p)所表示,这......
本文计算了Dynkin图为An的李代数的正根系(6)n的模3系数的上同调的一些重要的直和项。
......
球面稳定同伦群的计算一直是代数拓扑中的一个重要问题,计算它的主要工具是Adams谱序列.令A为模p Steenrod代数(p为奇素数),S为球谱,V(0......
本文主要研究了Steenrod代数上同调非平凡乘积元问题.设p为大于5的素数,A代表模p的Steenrod代数.通过对May谱序列的详尽组合分析,......
期刊
主要用May谱序列证明了非平凡的乘积b0k0δs+4∈ExtsA+8,t(Zp,Zp),其中p是大于等于7的素数,0≤s<p-4,q=2(p-1),t=(s+4)p3q+(s+3)p2q......
设P≥7为任意奇素数,A为模P的Steenrod代数.1962年,A.Liulevicius在他的文章中指出元素hi,bk∈ExtA*,*(Zp,Zp)分别具有双次数(1,2p......
利用Adams谱序列和May谱序列,发现了Smith-Toda谱V(1)的稳定同伦群中的一个非零元素,此元素在Adams谱序列里由h0b31表示.......
证明了在Adams谱序列中存在永久循环元hob41,且可收敛到稳定同伦群π其中V(n)是Toda-Smith谱.进而,利用Yoneda乘积,证明了在Adams......
本文研究了球面稳定同伦群中元素的非平凡性.利用May谱序列,证明了在Adams谱序列E_2项中存在乘积元素收敛到球面稳定同伦群的一族......
本文研究了球面稳定同伦群的问题.以Adams谱序列中的第二非平凡微分为几何输入,给出了球面稳定同伦群中hogn(n〉3)的收敛性.同时,由Yoned......
利用May谱序列的E1^s,t,*项收敛于群EA^s,t(Zp,Zp)以及Adams谱序列的E2^s,t项收敛于球面稳定群πt-s(S)p的方法,并结合谱的上纤维序列导出......
证明在Adams谱序列中,积b0h1γs∈Exts+3,A sp2 q+(s+1)pq+(s-2)q+(s-3)(Zp,Zp)收敛到球面稳定同伦群π*S中的一个新的非零的稳定......
利用Adams谱序列,May谱序列和上纤维序列等工具,并以某些相对低维的Ext群的结果为基础,具体地计算了Ext群中的某些元的第一阶数与......
证明了在p≥11时, 0≠h0(b1)3∈Ext7,3p2q+qA(H*V(2),Zp)和0≠(b1)3h0∈Ext8,3p2q+pq+2qA(H*V(2),Zp)在Adams谱序列中分别收敛到π......
通过May谱序列的方法,在古典ASS谱序列上证明了非平凡积k0δ^s+4∈ExtA^s+6,t(s)(Zp,Zp),当p≥11,0≤s≤p-4,t(s)=(s+4)p^3q+(s+3)p^2q+(s+4)pq+(s+2)q+s,其......
计算了Dykin图为An的李代数的正根系上同调的一些非零直和项.首先列出了R6的全部权子复形,然后利用链同构关系的相关定理对权子复......
利用Adams谱序列的方法证明了一个次数为(s+4)p3q+(s+4)p2q+(s+2)pq+(s+2)q+s的新的非平凡同伦元h0b1δ~s+4∈ExtsA+7,t(Zp,Zp),其中p≥11是奇素数,0≤s......
证明了在经典Adams谱序列中,当P≥11,3≤s≤P-3时,g0(b1)^2∈ExtA^6,2p^2q+pq+2q(H*V(2),Zp)在,Adams谱序列中收剑到π2p^2q+pq+2q-V(2)的非零元,g0(b1......
p≥11时,利用g0(b1)2∈Ext6,2p2q+pq+2q A(H*V(2),Zp)在Adams谱序列中的收敛性证明了g0(b1)2∈Ext6,2p2q+pq+2q A(H*V(1),Zp)在Adams谱序列中收敛到π......
利用关于Ext^*,*P(Zp,Zp)的一个估计,算出了Toda谱V(n)的某些特殊维数和次数上的Ext群的生成元情况,然后根据这几个结果并利用Adams谱序列和......
本文证明了当p(>-)11,3(<-)s<p-3时,h0(b1)3∈Ext7,3p2q+qA(H*V(2),Zp),(b1)3g0∈Ext8,3p2q+pq+2q(H*V(2),Zp)在Adams谱序列中分别收......
首先给出了May谱序列E1^s,t,u项的几个结果,然后利用这些结果和关于ExtP^s,t(Zp,Zp)的一个估计(P为由mod p Steenrod代数A的所有循环......
令p≥5为奇素数,研究Adams谱序列的二阶微分d2:ExtA^*,*(Zp,Zp)→ExtA^*+2,*+1(Zp,Zp),得到两个非平凡微分d2(gi)=a0li与d2k_i=a0l′i,其中gi∈ExtA^2,(p^......
对连通有限型谱X,Y,存在着Adams谱序列(ASS){Ers,t,dr}满足(1)dr:Ers,t→Ers+r,t+r-1是谱序列的微分,(2)E2s,t≌ExtAs,t(H*(X),H*(......
以Adams谱序列、May谱序列、上纤维序列及低维的Ext群为基础,具体地计算了Ext群中的某些元的第一阶数与第二阶数,并由此得出h0b1^2......
设奇素数p≥11,q=2(p-1),A为模p的Steenrod代数.证明了在Adams谱序列中,b1k0∈ExtyA^4,p2q+2pq+q是永久循环且不是dT边缘,从而收敛到π*V(1)中......
考虑V(1)谱的同伦群.首先借助May谱序列得到V(2)谱的上同调群的一些结论,然后用代数方法证明了在Adams谱序列中,(b1)^2g1∈ExtA^6,3p^2q+2......
利用May谱序列证明了,当n〉3时,乘积元素l_ng_0∈Ext_A5,pn+1q+2 pnq+pq+2q(Z_p,Z_p)和h_0g_n∈Ext_A(3,pn+1q+2 pnq+q)(Z_p,Z_p)是非平凡的,并......
利用May谱序列的相关理论对Adams谱序列的E2-项,即模p Steenrod代数A的上同调进行讨论,给出了b1δs+4在Adams谱序列中的非平凡性.......
令p〉5是素数,A表示模p Steenrod代数,S表示球谱的P局部化.首先给出了有关May谱序列的一些重要定理,然后作为应用,利用May谱序列和......