设G是一个连通图.其顶点数n≥4,最小度为δ,半径为r,则有δr≤(?),等号成立当且仅当下面(1), (2), (3)三式之一成立:(1) G是K5,(2) G~= K5\M,这里M是一个完美匹配,当n是偶数,(3)δ= n - 3,△≤n - 2,当n为奇数.这一结论解决了图的边连通度和半径的乘积相关的一个猜想,是由Sedlar, Vukiˇcevi′c,Aouchice和Hansen [14
在组合数学领域,杨图(Young diagram)是非常重要而且具有广泛影响的组合对象之一.本文在杨图(Young diagram)的基础上,介绍并研究了一种新的组合对象—置换杨表(permutation tableau).置换杨表本质上是A. Postnikov在研究完全非负Grassnann元胞及其元胞分解时所定义的]-图表(]-diagram)的一个子集. L.K. Williams和E.S
拓扑指标是定义在化合物分子图(骨架图)上的数值描述符.本文主要研究了一类具有完美匹配和奇长度直径的树的互补Wiener数和k-环螺旋链的超-Wiener指标.设G = (V (G),E(G))是一个连通图,则图G的互补Wiener数定义为(?),其中d(u,v|G)为图G中u和v两点间的距离, d为图G的直径;超-Wiener指标定义为(?),其中d(u,v)为图G中u和v两点间的距离.本文共分为
近年来,随着互联网络的飞速发展,网络性能自然引起人们的关注。互联网络的拓扑结构对网络的性能有着决定性的影响。在设计多处理器的网络拓扑时,人们最关心的问题是网络可靠性,即网络在它的某些部件(节点或者连接)发生故障的条件下仍然能够正常工作的能力。多处理器的互联网络拓扑通常被模型化为图。因此,图论中的一些经典概念,如连通度和边连通度,就被用来研究网络的可靠性。为了更精确地度量网络可靠性,人们提出了各种各
本文主要有两部分.第一部分得到多值算子的Lieb不等式.利用τ?可测算子奇异值和单调增凸函数的性质,把文献[1]中的几个关于矩阵的结论推广到τ?可测算子的情形.进一步推广到多值算子的情形: A,B∈M0为正算子, AB是正规的,并且l∈ρ(AB) = C\σ(AB) ( l为连接原点和∞的简单曲线),那么当r≥1时,有(AB)r<
图的特征值是图论与代数的一个交叉研究领域,是代数图论的一个分支.在1974年, F. Harary和A. J. Schwenk在文献[1]中提出了一个开放问题:哪些图的特征值互不相同?但不幸的是到目前为止这方面的结论很少.本文主要用特征多项式和交错定理刻画直径为d(G) = n - 2特征值互不相同的图,主要内容如下:在第一章引言中,我们给出了特征值的有关定义,符号及记号,并且回顾了特征值的研究历
恒化器(chemostat)是一个基本的微生物生态开放系统模型.它是一个重要的生物数学模型.通过对微生物的持久性、灭绝性、平衡点的全局吸引性等的研究,可以通过人工控制使自然界中的生物能够持续发展,具有重要的理论意义和实际意义.本文主要研究了具有脉冲扰动的时滞双营养chemostat模型和污染环境中一类具有脉冲扰动和污染的时滞双营养chemostat模型.将主要利用脉冲微分方程的比较原理,分别得到系
本文的主要内容分为两部分:首先,我们讨论了一类具有染病年龄结构的SIRS流行病模型,运用微分方程和积分方程的理论和方法,得到了该模型的基本再生数R0的表达式,并证明了当R0 1时,无病平衡点是不稳定的,此时存在惟一的地方病平衡点.其次,我们讨论了一类具有年龄结构的SIRS流行病模型,运用微分方程和积分方程的理论和方法,得到了该模型的基本再生数R0的
恒化器(chemostat)是研究微生物连续培养的重要实验器材,具有易得性的优点,因此它可以对微生物模型进行广泛的测试和实验.另外,恒化器可以模拟许多自然现象,如湖泊和海洋的单细胞藻类浮游生物的生长,所以研究恒化器模型具有重要的生态意义.研究内容主要包括微生物的持久性,灭绝性,局部或全局吸引性,周期性等内容,这些研究有助于我们更好的进行微生物培养工作.本文主要研究了具有抑制因子的营养循环和周期脉冲
本文首先给出了非交换弱Orlicz空间范数,然后得到了相关的非交换弱LP空间中的不等式,最后得到了T-可测算于的Hardy-Littlewood极大函数的弱平均不等式和非交换弱Orlicz空间范数不等式即以下三个不等式:(a)若10Φ(t)λt(MT(|T|))≤CΦsupt