基于变分法的几类椭圆方程解的存在性研究

来源 :曲阜师范大学 | 被引量 : 0次 | 上传用户:JackCF1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
椭圆方程对自然科学的发展,特别是对物理学中流体力学、弹性力学、电磁学及其它科学领域的发展起着越来越大的促进作用,在数学领域也得到越来越高的重视.基于此,本文利用变分法和临界点理论研究了几类椭圆方程,得到一系列有关变号解、无穷多个高能量解存在性和唯一性的结果,推广并改进了现有文献的相关存在性结论.所得主要结果概括如下:在第1章,介绍了变分法的发展历史和研究现状以及其众多专家学者的应用成果.与此同时我们给出了本文的结构框架、相关的理论基础以及我们常用的约定成俗的符号.在第2章,我们研究了下面一类非局部基尔霍夫型方程变号解的存在性#12其中a和b是正常数.借助于约束变分法和直接法,我们证明了变号解的存在性,并得到了变号解具有两个精确的节点域.这项工作可以看作是对某些已有文献结果的补充.在第3章,研究了下面一类带有Choquard项的非局部基尔霍夫方程#12其中a和b是正常数.借助Hardy-Littlewood-Sobolev不等式,我们证明了有界收敛(PS)c序列的存在性.联立山路定理,证明了这类非局部基尔霍夫方程的非平凡解的存在性.进一步,我们还通过Hardy-Littlewood-Sobolev不等式和Brouwer拓扑度得到了至少一个能量最小的变号解.在第4章,研究了一类负系数基尔霍夫型问题非平凡解的存在性.利用狄利克雷原理和对称山路定理,得到了至少一个非平凡解、一个局部负能非平凡解和一个全局正能非平凡解的存在性.在第5章,我们研究了下面一类分数阶薛定谔-泊松系统#12其中s∈(3/4,1),p ∈(3,5),λ是一个正的参数.借助变分理论法,我们说明了存在δ(λ)>0,对于所有的μ∈[μ1,μ1+(δ(λ)),使得上面的分数阶薛定谔-泊松系统具有正能量的非负束缚解.这里μ1是(-△)s+V(x)的特征值.在第6章,我们考虑了一类非线性分数阶薛定谔耦合系统#12这里s∈(0,1),N>2.在关于V(x)和F(x,u,v)的某些宽松假设条件下,利用变形喷泉定理证明了上述分数薛定谔耦合系统存在无穷多个高能量解.
其他文献
随着物联网、区块链、5G、大数据和人工智能技术的快速发展,大规模的智能设备接入物联网中,产生了海量的物联网数据。基于物联网、区块链、密码学等技术,能够对海量数据进行采集、存储、分析及挖掘,加快物联网设备走向智能化进程,提升用户体验。然而,大量的物联网数据由数据持有者独立享有,采用中心化服务器对数据进行管理,形成了数据孤岛。同时,物联网设备资源的有限性,进一步阻碍了数据潜在价值的实现。为了解决物联网
光和原子相互作用是量子光学的主要研究内容。其常用的研究方法包括仅把原子量子化的半经典理论,以及把光场和原子都量子化的全量子理论。光和原子的相互作用表现出很多独特的量子现象,如拉比震荡、相干布居俘获、慢光和里德堡阻塞等。本文研究光场和原子相互作用的过程,我们不仅关注光场的变化,也关注原子的行为。全文主要分为两个部分:一是光场的相干调控及其应用,二是这一过程中由单原子构成的自给式热机。光的相干调控是指
Hopf代数是代数学中的重要分支,不变量是数学研究中重要课题,其中自同构群是一个非常重要的不变量,本学位论文将研究若干类Hopf代数上双积的自同构群.由于确定代数的完全自同构群通常非常困难,本文主要研究满足一定条件的自同构群.鉴于张量范畴研究的迅速发展,将进一步在严格辫子张量范畴中研究扭曲张量双积的Hopf代数自同构.在后续研究中,讨论了相对Hom-Hopf模范畴作成张量范畴的充要条件.本文共五章
随着计算机能力和科学技术的快速发展,人们获得的数据所包含的信息越来越多,高维数据的统计推断问题研究已经成为十几年来炙手可热的研究热点.在一些实际问题中,除了样本信息之外,通常人们还可以获得有关回归系数的相关信息.利用这些回归系数的信息,很大程度上可以提高估计的效率,进而提高模型的效率.另外,在许多回归问题中,我们需要找出对预测响应变量起重要作用的解释因素,而这些因素通常具有组结构的特点.常见的例子
图像修复、压缩感知与机器学习等科学计算领域中的一些问题常化成带线性等式约束的可分裂凸规划问题,同时在通信系统、控制系统、电力系统、信号处理等工程应用中的一些问题也可以化成广义周期Sylvester矩阵方程。本文主要讨论求解这两类问题的迭代算法,同时分析算法的收敛性质,并通过数值仿真验证所设计算法的有效性。全文共分八章。第一章简要介绍两类问题的研究背景、研究现状及本文的研究内容。通过回顾带线性等式约
量子纠缠是量子信息与量子计算最为核心的资源,利用这种资源可以完成经典信息系统无法完成的任务,如量子隐形传态、量子密集编码、基于纠缠态的量子密码术等。在对处于纠缠态的量子系统进行操作的过程中,要最大程度地保持初始纠缠量,这是利用量子纠缠实现量子信息和量子计算的前提条件之一。然而,真实的量子系统不可能完全脱离环境,量子系统不可避免地与周围的环境相耦合而导致量子退相干,这是实现量子信息处理的主要障碍,所
非线性泛函分析是当今数学领域中一个具有广泛应用价值的重要研究方向:该方向的创立旨在将现实领域中出现的各种现象抽象成非线性数学问题,进而创立了一系列处理非线性问题的理论和方法.非线性泛函分析的主要内容和方法包括解析方法、半序方法、拓扑度理论、临界点理论和单调映射理论等.这些重要方法和理论可广泛的应用于非线性积分方程、常微分方程、偏微分方程和其他各种类型方程及其边值问题的研究.分数阶微分方程边值问题是
近些年来,量子信息学的发展极大推动了光场非高斯态的理论和实验研究,这是由于它的重要性远远超过了传统的高斯态。尤其是非高斯纠缠态,它能够弥补传统高斯纠缠态在量子信息处理中的不足,实现决定量子通讯成败的最佳纠缠蒸馏,从而有效提高传统高斯态的纠缠度和改善一些实际的量子信息处理过程。而且,作为一种新的量子信息资源,不仅能为长距离量子信息处理提供新的物理载体,还可推动光场量子态调控工程的发展。鉴于非高斯量子
寒冷适应问题一直是生物学家研究的热点问题,近年来伴随着组学的快速发展,寒冷适应背后的遗传机制研究更是成为进化生物学领域的研究热点。紫貂(Martes zibellina),属食肉目鼬科貂属,栖息地的丧失和人类的大量捕杀使紫貂种群数量急剧下降,目前紫貂已被我国列为国家一级保护动物。紫貂的主要栖息地为亚寒带针叶林地域,所处生境气候寒冷,年平均气温低于零度,最低气温低于-30℃。生活在寒冷地区的物种会采
适应是生物在形态结构和生理机能与所处的环境相适合,并进行生存和繁衍的过程。狐狸属于食肉目犬科狐属,现存12个物种,广泛分布于世界各地,且种群数量稳定。此外,赤狐和北极狐的毛色变种银狐和蓝狐由于较高的毛皮质量,在世界各地被广泛饲养。目前关于狐属适应性进化的分子机制的研究还较少,本研究借助比较转录组技术,对赤狐、沙狐和北极狐及毛色变种蓝狐和银狐3个物种进行分析。通过筛选它们之间的直系同源基因,进而进行