【摘 要】
:
随着铁路技术的迅速发展和高铁运行里程的不断增加,我国在途列车数量也逐渐增多,针对列车安全状态监管及故障诊断的研究显得越来越重要。牵引变流器系统是列车承担动能转换的重要装置,系统结构复杂且故障高发。变流器故障的发生会导致列车牵引传动系统异常从而影响整车正常运行,目前针对牵引变流器故障诊断的研究不多,所以对列车牵引变流器进行故障诊断是一个重点研究方向。然而列车牵引变流器故障场景复杂,传统诊断方法多依赖
论文部分内容阅读
随着铁路技术的迅速发展和高铁运行里程的不断增加,我国在途列车数量也逐渐增多,针对列车安全状态监管及故障诊断的研究显得越来越重要。牵引变流器系统是列车承担动能转换的重要装置,系统结构复杂且故障高发。变流器故障的发生会导致列车牵引传动系统异常从而影响整车正常运行,目前针对牵引变流器故障诊断的研究不多,所以对列车牵引变流器进行故障诊断是一个重点研究方向。然而列车牵引变流器故障场景复杂,传统诊断方法多依赖单传感器数据,不能全面包含故障特征、易受环境因素影响,导致诊断效率低下难以满足实际需求,因此本文开展基于多传感器融合的高速列车牵引变流器故障诊断技术研究,主要包括如下研究内容:(1)本文针对高速列车故障诊断技术研究现状进行了综述,并重点分析了传统诊断方法存在的问题。接着介绍了高速列车牵引变流器传感器数据特性,结合物理机理与统计学两个角度对变流器传感器数据进行特征筛选,选取了对牵引变流器故障影响较强的10个特征变量作为文章后续研究的数据基础。(2)传统的变流器故障诊断多基于单信号传感器进行,诊断结果仅能反应监测物理量的异常状态,不能全面代表部件故障特征,而且易受噪声干扰诊断效率低下。针对这些问题本文提出了基于LSTM的多故障智能诊断方案,模型自适应的学习多源变量数据特征,利用有效的数据融合策略来识别不同类型故障。诊断过程中,模型擅长提取时序数据里隐藏的长期依赖关系,可有效利用前后数据片段的时域关联特性;此外,多变量融合策略还充分考虑了不同变量间的空间关联特征,这使得输入数据的时空特性被充分挖掘。经实验测试,该方法能有效诊断变流器场景下的绝大多数故障。(3)文章将多种智能诊断方法进行深入比较,以研究不同模型各自性能优势。首先在单传感器场景下进行灵敏度验证实验,然后在多传感器场景下进行多故障诊断实验以测试不同模型的性能,并将DCNN与LSTM进行深入比对研究,分析各自特征提取过程,以及研究了不同训练集规模对各模型性能的影响程度。针对容易混淆的困难样本提出了针对性的优化诊断策略,从而提高整体实验精度。此外还在辅助变流器场景下进行可拓展性实验测试并取得了满意效果。(4)研发了高速列车网联化数据故障诊断系统,将智能诊断结果在系统端直观呈现,并结合数据可视化技术对实时传感器数据进行动态监管,此外系统还可对历史传感器数据进行管理。系统将信号实时监测、故障诊断以及数据管理相结合,为技术人员提供直观形象的列车运行状态监管服务。正文图48张,表20个,参考文献63篇。
其他文献
无人驾驶汽车是传感器、网络通信和信息安全等多种先进技术融合下的产物,包含感知、决策规划和动作执行三大模块。其中决策规划模块等同于人类的大脑,是无人驾驶系统中最核心的部分。近些年随着AI技术的飞速发展,强化学习逐渐崭露头角并成为了通往智慧型未来的主流方法之一。本文将以强化学习为手段设计面向无人驾驶汽车车道保持的决策方案,并在虚拟仿真环境下验证方案的可行性和有效性。首先,本文研究了典型的无人驾驶系统,
舵面负载模拟系统是一种地面条件下飞行器伺服控制机构的半实物仿真试验设备,主要用于复现飞行器舵面所受的各种空气动力载荷,以实现对伺服控制机构的检测和验证,从而确保飞行器的飞行控制精度。因此,舵面负载模拟系统对空气动力载荷谱的复现精度,将直接影响飞行器伺服控制机构检测结果的可信度和可靠性,并最终会关系到飞行器的飞控性能。然而,舵面负载模拟系统属于典型的被动式加载系统,将会受到多余力矩以及其它因素的干扰
无人驾驶列车系统是随着时代发展应运而生的产物,安全性、高效性和舒适性是其发展的核心要素和重要的设计指标。列车从人工驾驶到无人驾驶的转变对控制系统提出了更高的设计要求。同时,现代通信硬件设施和技术手段的发展,以及移动闭塞技术的广泛应用,保证了列车之间的信息交互,也促进了多列车协同控制的发展。随着人们对于出行的需求提升,乘客的乘车舒适性被列入列车控制系统的设计指标中,这是在列车保证安全高效运行的基础上
随着计算机立体视觉技术研究的深入,三维扫描技术得以不断发展,与其相关的点云数据处理技术也逐渐成为研究热点。点云边缘是用来描述目标物体轮廓边界的测量点集合,是理解和表达三维物体几何特征的基础,而对点云边缘的高精度提取也是实现点云目标物体参数高精度测量的前提条件。从点云边缘的完整提取和精确定位出发,本文提出一种基于法向量夹角均值与加权法线迭代的点云边缘提取算法,同时使用基于非边缘结构信息的点云优化方法
振动在生活中十分常见,如大型旋转机械的振动、车辆行驶引发的振动、铁路、桥梁和建筑物的自振等,这类振动的频率较低,一般在10 Hz以下。磁电式振动传感器是一种具有较低使用频段的测振传感器,而现有的磁电式振动传感器自然频率较高,其低频测量下限难以满足低频测量的要求,因此,需对其低频特性进行补偿。同时,对磁电式振动传感器工作性能的评估需要分析其自身的噪声水平,自噪声水平也是实时判定测振传感器是否劣化以及
21世纪开始,工业生产中工业机器人占比不断增加,对其性能的要求也不断提高。工业机器人的普通末端执行器由于其专门性,只能完成单一简单的抓取动作,已经很难满足日益复杂的操作要求。多指灵巧手作为新型的末端执行器,因其在抓取上具有良好的通用性和适应性,可以完成复杂和多样的操作任务,有重要的研究意义和应用前景。目前绝大多数的多指灵巧手为串联结构,采用的驱动方式为欠驱动,使灵巧手存在稳定性差和精度低等缺点,同
离线手写签名认证是利用个人手写的签名图像对其进行身份认证的技术,具有成本低、易于接受等优点,在安全、金融、司法、刑侦等领域中都有十分重要的应用。近年来,随着深度学习等方法的兴起,离线手写签名认证系统的性能不断提高。然而,在实际应用中,由于精心伪造的签名与真实签名区分度较小,并且同一个人在不同时刻的签名差异较大等难点,高精度离线手写签名认证仍然是一个具有挑战性的研究课题。针对离线手写签名认证技术,本
随着互联网与计算机技术的快速发展及广泛使用,网络上数据日渐庞大,维护网络空间安全已成为网络与计算机安全发展极为重要的一部分。近年来网络安全事件频频发生,恶意代码对计算机造成的安全威胁不可小觑,严重危害国家、社会和个人的隐私安全和经济利益,同时,对恶意代码的特征提取、检测、分类以及对未知新型恶意代码的检测的能力在网络空间安全领域起到了至关重要的作用。恶意软件制作者为了躲避检测查杀,往往对恶意软件通过
自主导航技术是地面无人车的核心技术,是人工智能领域研究的热点问题。地面无人车的自主导航一般分为感知、定位、路径规划与控制这四个部分。路径规划问题作为地面无人车研究中不可或缺的一部分,具有非常重要的研究和应用价值,虽然目前有许多学者提出各种各样的算法来分析、解决这个问题,但是行之有效的方法并不多,这就是本文继续研究路径规划问题的必要性。本文内容和研究成果如下:(1)实现了基于改进A*算法的全局路径规
在这个信息技术飞速发展的时代,网络逐渐成为人们生产生活不可或缺的一部分,与此同时许多网络空间安全问题也日益凸显。网络流量异常检测是网络安全领域研究的重要方向,本文以胶囊网络(Capsule Network,CapsNet)为基础,研究网络流量异常检测算法,提出基于SMOTE-Tomek混合采样和胶囊网络的网络流量异常检测模型。本文的主要研究工作如下:首先,研究分析CapsNet的工作原理,算法架构