论文部分内容阅读
本文研究了四类具有退化奇点的平面可积系统的多项式扰动问题,属于Liénard-(m,n)型x=y,y=P(x)+εyQ(x)(deg(P)=m,deg(Q)=n)微分系统.当ε=0时,未扰动系统是Hamilton系统.当m=3时,它具有四次椭圆Hamilton函数,关于其多项式扰动问题已有深入研究,如[75-78].当m=4时,未扰动系统是具有五次超椭圆Hamilton函数的Hamilton系统.五次超椭圆Hamilton函数的规范形最早由I.D.Iliev和L.Gavrilov[58]为回答V.I.Arnold[18]的一个问题而提出,而对一类余维五幂零尖点的五参数开折的极限环问题,研究可化归为具有五次超椭圆Hamilton函数的Hamilton系统在多项式扰动下的极限环判定[53].本文考虑了三类具有幂零奇点的四次Hamilton系统的多项式扰动,以及另外一类二次可逆非Hamilton系统的四次扰动问题,讨论了它们Abel积分孤立零点的个数估计,以及各类分支产生的极限环个数问题,给出了系统的(伪)Abel积分孤立零点个数的上(确)界估计和系统全局环性数的下界估计.这是与高阶退化奇点多参数开折和弱化Hilbert第十六问题密切相关的研究课题. 具体地,本文做了以下工作, 一、第一章是一个简要介绍,介绍了本文的主要工作背景,研究进展情况,相关基础理论与方法和本文主要工作内容. 二、在第二章,我们研究了一类具有幂零鞍点的同宿环的四次Hamil-ton系统的四次多项式扰动问题,扰动系统是Liénard-(4,3)型.通过Hopf分支分析,得到初等细焦点阶数最多为3,证明了扰动系统存在极限环的(3,0)分布.考虑连接幂零鞍点和分界线的同宿环的扰动,得到系统可分支出3个极限环的参数域.对紧致周期环域的环性数讨论,采用了M.Grau等人考虑Abel积分的一个Chebyshev判据,将Abel积分零点个数的判定问题转化为一个代数判定问题,证明系统Abel积分孤立零点个数最多为4(即Abel积分向量空间是Chebyshev精度1的). 三、在第三章,我们研究了一类具有双曲鞍点,尖点的退化多角环的四次Hamilton系统的三次多项式扰动问题,扰动系统属于Liénard-(4,2)型.通过对一阶Melnikov函数在初等中心附近的渐近展开,得到细焦点阶数最多为2.通过证明其一阶Melnikov函数具有Chebyshev性质,得到周期环域的环性数为2.并且一般性地我们对于一类具有双曲鞍点与k阶尖点的退化多角环的Hamilton系统的扰动系统给出一阶Melnikov函数的渐近展开式,并利用其得到该Liénard-(4,2)型系统退化多角环环性数的下界为2. 四、在第四章,我们研究了一类具有幂零中心的四次Hamilton系统的三次多项式扰动问题,扰动系统属于Liénard-(4,2)型.通过计算一阶Mel-nikov函数在幂零中心和双曲鞍点同宿环附近的渐近展开式,得到系统可以产生至少二个极限环;借助M.Grau等人提出的Abel积分的Chebyshev判据及求解半代数系统,证明了其一阶Meilkov函数在紧致周期环域最多具有2个零点. 五、在第五章,我们研究了一类具有无界同宿环的二次可逆非Hamil-ton系统的四次多项式扰动问题,扰动系统属于Liénard-(1,3)型.未扰动系统具有指数形式的积分因子,我们利用一些分析技巧结合微分方程定义的积分曲线思想,从几何角度证明(伪)Abel积分具有Chebyshev性质,从而证明了在有限平面系统环性数为1,结果符合Lins-de Melo-Pugh猜想.