局部单位半群分次环的冲积和根

来源 :河北师范大学 | 被引量 : 0次 | 上传用户:gumozaoshi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
设S为有限局部单位半群,R为S-分次环.该文首先根据群分次环的冲积定义了S-分次环R的冲积R#S<*>,证明了R#S<*>的为结合环,以及模范畴R#S<*>-Mod与分次模范畴(S,R)-gr之间的等价性,并进一步研究了局部单位半群分次环的分次根,Jacobson根及相关的自反根的关系,得到J(R#S<*>)=J<,s>(R)#S<*>及J<,ref>(R)=(J(R#S<*>))↓=J<,s>(R)的结论.最后,该文探讨了当S为无限半群时,S-分次环R的冲积R#S<*>的局部单位性,进而推广了前半部分的某些结果.
其他文献
设G是图,若G中含有Hamilton圈,则称G为Hamilton图.该文利用设整数k≥1.非负有理数序列(α,α,…,α)称为H-序列中给出的插点引理和H-序列,给出有关Hamilton图的两个充分条件.
本文讨论的图都是有限、无向的简单图。  图G的正常边染色是映射:E(G)→{1,2,", k},对G中任意两条相邻接的边e1和e2,有(e1)≠(e2),则称是k边可染的.使得图具有k边可染的最
边界无单元法是将改进的移动最小二乘法与边界积分方程直接结合,从而得到偏微分方程数值解的一种无网格边界积分方程方法。  本文将边界无单元法应用于求解地下水流问题,建立
设α≥2,A={P+α|p是素数,k是正整数},A(x)=#{n|n≤x,n∈A}.Romanov定理:存在常数c>0,对于充分大的x,则A(x)≥cx.在该文中,我们研究了Romanov定理中的常数,发现了定理中的常数
该文用留数方法证明了自伴和非自伴的Dirac算子的特征值估计和特征展开定理.对于自伴Dirac算子的特征展开定理的证明,用积分方程方法有一定的困难.该文用留数方法清晰而严格
现实世界中许多复杂系统都可以通过复杂网络进行描述,近年来国内外掀起了复杂网络研究热潮。网络的拓扑结构和网络行为间的密切关系,使得复杂网络性质的形成机制成为人们研究
设施选址模型在生活,经济,管理,交通运输甚至军事等领域都有着非常广泛的应用.设施选址模型包含离散选址模型、网络选址模型和连续选址模型.本文对单设施连续选址问题和多设
该文主要研究具有两类索赔的风险模型.考虑了两种模型,一种是索赔由齐次Poisson过程和更新过程引起,另一种是累积索赔由复合Poisson过程和Gamma过程引起.对第一种模型,由于盈
一个C-正则半群{T(t)}称为压缩的,如何对任意的t≥0和x∈X都有||T(t)x||≤||Cx||.在该文中,我们首先考虑,压缩正则算子半群的扰动问题,得到如下结果.