【摘 要】
:
在智慧交通系统领域中,交通标志检测和识别是重要的研究课题,它可以辅助驾驶员或者自主驾驶系统掌握路况信息和明确驾驶行为限制,有效地保证驾驶安全、减少交通事故。然而,基于图像处理技术的传统检测方法存在较大局限性,难以适应复杂多变的交通场景,无法满足实际需求。随着深度学习的兴起,基于卷积神经网络的交通标志检测方法发展快速并逐渐成为了主流的研究方向,但仍然面临很多挑战。本文对交通标志检测存在的难点和现有方法存在的不足进行了回归和总结。针对交通标志检测存在的小尺寸、多尺度、相似外观、兼顾检测性能和效率等问题,本文提
论文部分内容阅读
在智慧交通系统领域中,交通标志检测和识别是重要的研究课题,它可以辅助驾驶员或者自主驾驶系统掌握路况信息和明确驾驶行为限制,有效地保证驾驶安全、减少交通事故。然而,基于图像处理技术的传统检测方法存在较大局限性,难以适应复杂多变的交通场景,无法满足实际需求。随着深度学习的兴起,基于卷积神经网络的交通标志检测方法发展快速并逐渐成为了主流的研究方向,但仍然面临很多挑战。本文对交通标志检测存在的难点和现有方法存在的不足进行了回归和总结。针对交通标志检测存在的小尺寸、多尺度、相似外观、兼顾检测性能和效率等问题,本文提出了一种卷积神经网络检测方法,实现在大而复杂的交通场景中,准确且快速地进行交通标志检测和识别。论文的主要的工作如下:
(1)由于一个需要完成复杂任务的神经网络通常难以兼顾检测性能和检测效率,因此,本文将交通标志检测分划分为定位和分类两个更具体的任务,并设计了两个独立的神经网络,定位神经网络和分类神经网络,来分别完成这两个子任务。实验结果表明,虽然使用了两个独立的神经网络无法实现端到端,但它们花费的训练更短,推理速度更快,检测效果更好。
(2)为了实现在高像素的图像中快速地定位交通标志,本文采用了fire模块来搭建轻量高效的定位神经网络,以减小神经网络的本身的复杂度;采用了基于中心点估计的检测框架,以简化候选区域生成流程;并适当地对神经网络的输入图像进行了降采样,以减小神经网络的输入规模。此外,本文对fire模块进行了改进,并通过融合不同层次的特征图来提取多尺度信息,使得定位神经网络在改善效率的同时,对小尺寸和多尺度的交通标志仍能达到较高的召回率和定位精度。
(3)由于同一子类别的交通标志在外观上非常相似,所以很难将它们准确地进行分类。通过观察发现,交通标志中心区域的图案往往存在不同。因此,本文采用了全局池化来从交通标志中心区域,提取具有更加丰富的鉴别信息的局部特征,以提高分类神经网络的准确性。实验结果表明,局部特征可有效地改善神经网络的分类性能,而且,对比常规卷积,全局池化对分类准确度的提升效果更佳。
最后,本文选用了大规模交通标志数据集TT100K对本文所提方法进行测试和评估。实验结果表明,本文所提方法在性能和效率上都超过了很多已有的领先的检测方法,对小尺寸交通标志的检测性能提升显著。
其他文献
人流量预测在城市交通管理和城市公共安全中发挥着重要的作用,准确预测城市区域的人流量具有非常大的挑战。一方面,城市范围的人流量数据是高维度的,而在原始的高维数据中通常包含冗余信息,这会对预测结果造成一定的误差,降低预测的准确度。现有的预测模型大多数都没有考虑高维度人流量数据对预测精度和算法效率的影响,并且网络结构复杂、参数量大,训练网络需要消耗巨大的成本;另一方面,人流量的预测受到空间结构关联性、动态时间依赖关系和外部因素(例如天气、节假日、活动事件)等诸多复杂因素的影响。针对上述问题,本文根据城市区域人流
妈祖,又称天妃、天后、天上圣母,是从宋代沿续至今的以船工、渔民为信奉者主体的神祇。目前,全世界45个国家和地区有上万座妈祖庙,3亿多人信仰妈祖。在台湾,妈祖是最重要、影响力最大的民间信仰。2009 年,在海峡两岸的通力合作之下,联合国教科文组织审查并表决通过中国提案,妈祖信仰民俗被正式列入人类非物质文化遗产名录,成为中国首个信俗类世界文化遗产。 由于漕运、河工的关系,清代是妈祖信仰最受官方重视
阿尔茨海默症(Alzheimers Disease,AD)是一种多发于老年群体中的发病期长、不可逆且不可治愈的神经病变疾病,俗称老年痴呆。近年来,中国人口“老龄化”的问题日益严峻,AD早期诊断的有效研究可极大缓解患者带来的家庭及社会经济压力,一定程度上为患病人群及医学诊断提供有意义的指引。因此,如何有效地对AD早期进行诊断已经成为重要的研究方向。
随着深度学习(Deep Learning,DL)与医疗技术的不断深入,越来越多的领域从传统的人工分析转换到计算机辅助诊断。核磁共振成像(Magneti
近年来,人脸识别作为一个具有安全、方便、快捷等特性的生物识别技术已经应用于很多领域。一个较好的人脸识别模型往往依赖于大量的训练数据,但在一些特殊的领域,例如公安、医院等机构不具有大量带有标记的训练样本。在这种情况下,人脸识别有如下挑战:如果将源域(与应用场景数据分布不一致)训练的人脸识别模型应用到目标域(与应用场景分布一致)中,识别性能会大大降低;如果只对图片库gallery样本进行学习,gallery类内散度矩阵退化为0,大多数判别分析方法无法应用,导致训练的模型容易欠拟合,泛化能力差。
域自
近些年来,声源定位技术在人机交互系统、视频会议系统和智能语音系统等领域的应用越来越广泛。时延估计定位算法作为声源定位的重要方法之一,其时延估计值的准确性直接影响到声源定位系统的性能。时延估计算法计算量低、结构复杂度小,被广泛应用在声源定位中。在室外环境下,低信噪比是影响声源定位精度的主要因素;在室内环境中,噪声和混响都会对声源定位的准确性产生影响。因此,在低信噪比或噪声与混响同时存在的环境中,对时延估计算法进行深入研究,以提高时间延迟估计精度和稳定性,具有重要的意义。
首先,在低信噪比自由空间声
近年来,随着物联网技术(Internet of Things,IoT)的广泛应用,对基于位置服务的需求也迅速增加;尤其是对室内定位服务的需求,由于传统的GPS定位技术等不适用于室内环境,所以室内专用的定位技术成为研究热点。其中基于位置指纹的室内定位方法因为成本低廉,深受国内外研究者的青睐,但其存在如定位精度不高、定位速度较慢等缺点。针对此问题,本文研究了三种基于聚类的位置指纹室内定位算法,主要研究内容如下:
(1)针对大型场所定位耗时长的问题,本文提出了一种基于层次聚类的快速室内定位算法。该算法
至真至善至纯至美,用这八个字来形容陈秋梅是再恰当不过了。陈秋梅是爱尔兰著名传奇音乐Jimmy MacCarthy的夫人,欧洲中国文化艺术交流与合作研究会和中外国际家庭联谊会会长,中国国际新闻杂志社爱尔兰分社社长兼首席记者。她像一杯香茗,茶香袅袅,清新可人。她质朴、谦和、睿智,是绽放在爱尔兰的一枝中国玫瑰,以其高贵的气质、大气的格局和坚韧不拔的个人魅力吸引着我们。 2021年,是中华民族伟大复兴
网络入侵检测作为网络安全的有效保障,已经成为重要的研究领域。随着传统机器学习技术和深度学习技术的发展,研究者们将其引入网络入侵检测领域作为海量数据分类问题的解决措施。近年来研究者们基于传统机器学习和深度学习提出了许多性能良好的网络入侵检测方法,然而,大多数方法在检测稀有攻击时表现不佳。针对网络入侵检测中稀有攻击难以被识别的问题,本文进行了三个方面的研究。
针对网络数据中包含大量冗余信息,当攻击类别之间数据分布不平衡时,冗余信息会对稀有攻击模式产生影响的问题,本文提出了基于遗传编程算法与随机森林的
现实生活中,很多实际的优化问题都需要处理大量的决策变量,这称为大规模优化问题。虽然传统的计算智能方法在解决一些低维优化问题是有效的,但是,随着决策变量的增加,这些方法在求解大规模优化问题上性能退化,很难找到全局最优解。因此,将计算智能方法进行合理的、有效的改进来求解大规模优化问题显得越来越有必要。
粒子群优化算法(Particle Swarm Optimization,PSO)是计算智能方法的一个分支,由于其原理简单、便于实现等特点,受到了许多学者的关注,将其广泛应用于解决优化问题和实际的工程问
说到豆腐,也可以算是一个国粹了。人们常说“青菜豆腐保平安”,豆腐在中国人生活中的意义可见一斑。但吃豆腐吃出名堂、吃出水平的要算平桥人,一道被称为“天下第一菜”的平桥豆腐,成为淮扬菜系中的著名佳肴,流传到江浙沪、北上广,甚至欧美海外,让那么多的人情有独钟,让那么多的人慕名神往,把豆腐文化发挥得那样的淋漓尽致。由此可见平桥豆腐这道菜肴的影响力以及它在豆腐美食家族中的地位。 在所有关于平桥豆腐的介绍