【摘 要】
:
下半有界算子的Friedrichs延拓在数学物理中有着广泛的应用,它是数学物理中分析学的核心内容.该文的前一部分就此延拓方法在数学物理中的应用背景以及自身的实质特性给出一种
论文部分内容阅读
下半有界算子的Friedrichs延拓在数学物理中有着广泛的应用,它是数学物理中分析学的核心内容.该文的前一部分就此延拓方法在数学物理中的应用背景以及自身的实质特性给出一种较为详尽的综述,该文的后一部分以一类2n阶实对称常微分算式为具体对象,在有限闭区间及极限点情形下实现了Friedrichs延拓的边值刻画.再利用已有的结果,作者建立了Friedrichs延拓、Calkin延拓以及von Neumann延拓三者之间的对应关系,即Friedrichs延拓所对应的边值条件、Calkin延拓相应的矩阵与von Neumann延拓相应的酉算子的对应关系.
其他文献
这篇论文介绍了图像处理中的发展比较早、应用范围比较广的一类重要的处理技术:图像复原,或者称图像重构,或者称图像恢复,同时简要概述了最优化方法的一些基本内容。重点讲述了用
偏微分方程的发展可以追溯到18世纪,并且至今偏微分方程仍然是人们研宄的热点问题之一.早在上个世纪数学家们已经对不同类型的偏微分方程解的存在性、唯一性、稳定性等性质给
本文包含三章:第一章是绪论;第二章考虑了在有界光滑区域上的Kirchhoff问题,利用山路定理和喷泉定理得到相应问题解的存在性与多解性;第三章我们主要利用截断方法和山路定理,
KKM原理和平衡问题理论已成为研究来自自然科学和社会科学中各类非线性问题的有力工具.由于其广泛的应用前景,这些理论和应用的研究正处于迅速发展阶段,毫无疑问,越来越多的
最优化方法是运筹学的一个重要组成部分,在自然科学,社会科学,生产实践,工程设计和现代化管理中具有广泛的应用.很多实际问题都可以归结为最优化问题来解决.最优化问题的一个
该文主要讨论了一类含有吸收项,并且在边界上耦合的非线性抛物方程组.研究其解的爆破和整体存在条件,以及临界指标问题.在绪论中,该文介绍了反应扩散方程的实际意义和来源.在
半参数模型和随机效应模型是当今回归分析中研究的热点课题,在实际问题尤其是在生物统计学、经济学中有着广泛的应用.该文研究了指数族半参数非线性模型和指数族半参数非线性
20世纪90年代初,作为全纯浸入和完全实浸入的推广,B.Y.Chen在复流形的子流形上引入了斜浸入的概念(见[16]),在此之后斜子流形的微分几何性质引起了许多学者的关注.J.L.Cabrer
随着现代科学技术的发展,自然界中许多问题都可建立数学模型,其中某些模型可用非线性偏微分方程(组)来描述.对特定问题的研究自然就归结为对描述该问题数学模型的研究,求解模
非线性问题通常产生于自然科学与工程领域,因其能很好地描述自然界中的各种现象,一直以来受到大量科研工作者的广泛关注.Schrddinger方程作为物理量子力学中最基本的方程,关