论文部分内容阅读
大量事实证明:只要求学生解習题,而不给学生讲透数学概念、实质问题,等于只是给了学生一把对号开锁的钥匙,而不是教给学生解剖锁的结构原理。不交给学生一把万能钥匙,学生是很难找到窍门的。因此有必要进行系统而又严肃的概念教学,事实上数学知识都是以概念为基础的。要使学生获得系统的数学知识,首先必须获得清晰明确的数学概念。笔者结合教学实践谈谈本人在数学概念教学中的几点想法与体会。
一、理解概念的逻辑性
数学概念可分为两个重要方面:一是概念的“质”,也就是概念的内涵(概念的本质属性);二是概念的“量”,也就是概念的外延(概念的所有对象的和)。假如把一个概念当作一个集合,那么概念的内涵就是这个集合里的元素的所有的共同属性的总和,而概念的外延则是这个集合中所有元素的全体。内涵和外延是不可分割的两部分,揭示概念的内涵就不能不涉及到概念的外延的问题。同时,概念的外延还有大小之分,外延大的叫做种概念,外延小的则叫做属概念。当然,种概念与属概念也并不是绝对的,有理数对实数来说是属概念,但它对整数来说又是种概念。一个概念,可能有许多的属概念。一个属概念与其他的属概念本质上的差别又称为属差。要想给某一概念下定义,首先应先向学生指出与被定义的概念最接近的概念是什么,再紧接着指出被定义概念的属差,即概念定义=种概念+属差。如:为了定义菱形,我们教学时可以先利用“平行四边形”这一学过的概念,其主要原因是“平行四边形”是菱形最接近的种概念,它规定了菱形所属的类别,但菱形不是一般的平行四边形,它以“有一组邻边相等”这一特征与平行四边形的另一属概念——矩形区别开,这样就可以得到:菱形=平行四边形+有一组邻边相等。
因此,我们在平时的教学中应特别注意把不同的概念联系在一起,进行比较,并从不同侧面加深对概念的理解,使它系统化、网络化,这样就不会造成学生对概念理解的模糊,从而导致错误地运用。相反,有利于学生对知识的贮藏,有利于“牵一发而动全身”。
二、明确概念的顺序性
数学概念,是通过对实验现象或某些具体的事例的分析,经过抽象概括而导出的,它有一个形成的过程。它们一般是从几个原始的概念或者公理出发,通过一番推理而扩展成为一系列的定义或者定理.而每一个新出现的概念都依赖着已有的概念来表达,或是由已有的概念推导出来的。例如“一元二次方程”的概念,它就是由前置概念推导而来的,它缘自“一元一次方程”的概念,而“一元一次方程” 的概念又是以“整式方程、方程”等作为预备概念而得出的。如果对以上某一概念不理解或者一知半解,那得出新的概念或者它的解法就会有一定的难度,因此,在平时的教学中我们一定要注意概念教学的顺序性。正是这些概念的出现的顺序性才将我们的教材有机地串联在一起,形成知识的网络结构图。
针对概念形成的阶段性、发展性和连贯性,我们教师教学中应当注意:在学生对某些预备概念模糊不清的情况下,千万不要急于引入新概念,最好先复习涉及新概念的相关预备概念,尤其是对特别重要的、关键性的预备概念,教师要反复强调,以求得学生较为彻底的理解,方可为新概念的导入作出良好的铺垫。
三、掌握概念的抽象性
中学数学教材中的许多原始概念,如点、线、面、体、数、常数、变数等等,都是由具体的事物观察然后再抽象出来的。人们长期观察了月亮、太阳、光线、水面等具体事物,逐步形成了有关“圆”、“直线”、“平面”等带有共性的、本质的概念。这些概念是对具体的数和形的感知而形成的表象,然后再由表象经过抽象、概括而形成的。例如:正方形的面积S和它的边长a之间的关系是S=a,边长a可在a>0的范围内任意选取,对于a的每一个确定的值,其面积S都有一个确定的值与它相对应。若抛开这个个性的关系,抽出共性的东西,并加以概括,就可以得到函数的概念:“在某个变化过程中有两个变量x和y,若对于x在某一范围内的任一个取值,y都有惟一一个确定的值与它相对应,那么,我们就把y称之为x的函数。”由此可知,概念是人们对感性材料进行抽象的产物;感性认识是形成概念的基础。如果学生没有感性认识或感性认识不完备时,我们就应该借助于实物、模型、教具、图形或形象的语言进行较为直观的教学,从而使学生从中获得感性认识。对于一些概念(属概念),教师可以直接从已知的概念(种概念)中引入,不必再经过取得感性认识的阶段。如有理数的概念,就可以直接从整数、分数的概念中引入。
一、理解概念的逻辑性
数学概念可分为两个重要方面:一是概念的“质”,也就是概念的内涵(概念的本质属性);二是概念的“量”,也就是概念的外延(概念的所有对象的和)。假如把一个概念当作一个集合,那么概念的内涵就是这个集合里的元素的所有的共同属性的总和,而概念的外延则是这个集合中所有元素的全体。内涵和外延是不可分割的两部分,揭示概念的内涵就不能不涉及到概念的外延的问题。同时,概念的外延还有大小之分,外延大的叫做种概念,外延小的则叫做属概念。当然,种概念与属概念也并不是绝对的,有理数对实数来说是属概念,但它对整数来说又是种概念。一个概念,可能有许多的属概念。一个属概念与其他的属概念本质上的差别又称为属差。要想给某一概念下定义,首先应先向学生指出与被定义的概念最接近的概念是什么,再紧接着指出被定义概念的属差,即概念定义=种概念+属差。如:为了定义菱形,我们教学时可以先利用“平行四边形”这一学过的概念,其主要原因是“平行四边形”是菱形最接近的种概念,它规定了菱形所属的类别,但菱形不是一般的平行四边形,它以“有一组邻边相等”这一特征与平行四边形的另一属概念——矩形区别开,这样就可以得到:菱形=平行四边形+有一组邻边相等。
因此,我们在平时的教学中应特别注意把不同的概念联系在一起,进行比较,并从不同侧面加深对概念的理解,使它系统化、网络化,这样就不会造成学生对概念理解的模糊,从而导致错误地运用。相反,有利于学生对知识的贮藏,有利于“牵一发而动全身”。
二、明确概念的顺序性
数学概念,是通过对实验现象或某些具体的事例的分析,经过抽象概括而导出的,它有一个形成的过程。它们一般是从几个原始的概念或者公理出发,通过一番推理而扩展成为一系列的定义或者定理.而每一个新出现的概念都依赖着已有的概念来表达,或是由已有的概念推导出来的。例如“一元二次方程”的概念,它就是由前置概念推导而来的,它缘自“一元一次方程”的概念,而“一元一次方程” 的概念又是以“整式方程、方程”等作为预备概念而得出的。如果对以上某一概念不理解或者一知半解,那得出新的概念或者它的解法就会有一定的难度,因此,在平时的教学中我们一定要注意概念教学的顺序性。正是这些概念的出现的顺序性才将我们的教材有机地串联在一起,形成知识的网络结构图。
针对概念形成的阶段性、发展性和连贯性,我们教师教学中应当注意:在学生对某些预备概念模糊不清的情况下,千万不要急于引入新概念,最好先复习涉及新概念的相关预备概念,尤其是对特别重要的、关键性的预备概念,教师要反复强调,以求得学生较为彻底的理解,方可为新概念的导入作出良好的铺垫。
三、掌握概念的抽象性
中学数学教材中的许多原始概念,如点、线、面、体、数、常数、变数等等,都是由具体的事物观察然后再抽象出来的。人们长期观察了月亮、太阳、光线、水面等具体事物,逐步形成了有关“圆”、“直线”、“平面”等带有共性的、本质的概念。这些概念是对具体的数和形的感知而形成的表象,然后再由表象经过抽象、概括而形成的。例如:正方形的面积S和它的边长a之间的关系是S=a,边长a可在a>0的范围内任意选取,对于a的每一个确定的值,其面积S都有一个确定的值与它相对应。若抛开这个个性的关系,抽出共性的东西,并加以概括,就可以得到函数的概念:“在某个变化过程中有两个变量x和y,若对于x在某一范围内的任一个取值,y都有惟一一个确定的值与它相对应,那么,我们就把y称之为x的函数。”由此可知,概念是人们对感性材料进行抽象的产物;感性认识是形成概念的基础。如果学生没有感性认识或感性认识不完备时,我们就应该借助于实物、模型、教具、图形或形象的语言进行较为直观的教学,从而使学生从中获得感性认识。对于一些概念(属概念),教师可以直接从已知的概念(种概念)中引入,不必再经过取得感性认识的阶段。如有理数的概念,就可以直接从整数、分数的概念中引入。