有效进行初中数学概念教学

来源 :未来英才 | 被引量 : 0次 | 上传用户:kangzeng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  大量事实证明:只要求学生解習题,而不给学生讲透数学概念、实质问题,等于只是给了学生一把对号开锁的钥匙,而不是教给学生解剖锁的结构原理。不交给学生一把万能钥匙,学生是很难找到窍门的。因此有必要进行系统而又严肃的概念教学,事实上数学知识都是以概念为基础的。要使学生获得系统的数学知识,首先必须获得清晰明确的数学概念。笔者结合教学实践谈谈本人在数学概念教学中的几点想法与体会。
  一、理解概念的逻辑性
  数学概念可分为两个重要方面:一是概念的“质”,也就是概念的内涵(概念的本质属性);二是概念的“量”,也就是概念的外延(概念的所有对象的和)。假如把一个概念当作一个集合,那么概念的内涵就是这个集合里的元素的所有的共同属性的总和,而概念的外延则是这个集合中所有元素的全体。内涵和外延是不可分割的两部分,揭示概念的内涵就不能不涉及到概念的外延的问题。同时,概念的外延还有大小之分,外延大的叫做种概念,外延小的则叫做属概念。当然,种概念与属概念也并不是绝对的,有理数对实数来说是属概念,但它对整数来说又是种概念。一个概念,可能有许多的属概念。一个属概念与其他的属概念本质上的差别又称为属差。要想给某一概念下定义,首先应先向学生指出与被定义的概念最接近的概念是什么,再紧接着指出被定义概念的属差,即概念定义=种概念+属差。如:为了定义菱形,我们教学时可以先利用“平行四边形”这一学过的概念,其主要原因是“平行四边形”是菱形最接近的种概念,它规定了菱形所属的类别,但菱形不是一般的平行四边形,它以“有一组邻边相等”这一特征与平行四边形的另一属概念——矩形区别开,这样就可以得到:菱形=平行四边形+有一组邻边相等。
  因此,我们在平时的教学中应特别注意把不同的概念联系在一起,进行比较,并从不同侧面加深对概念的理解,使它系统化、网络化,这样就不会造成学生对概念理解的模糊,从而导致错误地运用。相反,有利于学生对知识的贮藏,有利于“牵一发而动全身”。
  二、明确概念的顺序性
  数学概念,是通过对实验现象或某些具体的事例的分析,经过抽象概括而导出的,它有一个形成的过程。它们一般是从几个原始的概念或者公理出发,通过一番推理而扩展成为一系列的定义或者定理.而每一个新出现的概念都依赖着已有的概念来表达,或是由已有的概念推导出来的。例如“一元二次方程”的概念,它就是由前置概念推导而来的,它缘自“一元一次方程”的概念,而“一元一次方程” 的概念又是以“整式方程、方程”等作为预备概念而得出的。如果对以上某一概念不理解或者一知半解,那得出新的概念或者它的解法就会有一定的难度,因此,在平时的教学中我们一定要注意概念教学的顺序性。正是这些概念的出现的顺序性才将我们的教材有机地串联在一起,形成知识的网络结构图。
  针对概念形成的阶段性、发展性和连贯性,我们教师教学中应当注意:在学生对某些预备概念模糊不清的情况下,千万不要急于引入新概念,最好先复习涉及新概念的相关预备概念,尤其是对特别重要的、关键性的预备概念,教师要反复强调,以求得学生较为彻底的理解,方可为新概念的导入作出良好的铺垫。
  三、掌握概念的抽象性
  中学数学教材中的许多原始概念,如点、线、面、体、数、常数、变数等等,都是由具体的事物观察然后再抽象出来的。人们长期观察了月亮、太阳、光线、水面等具体事物,逐步形成了有关“圆”、“直线”、“平面”等带有共性的、本质的概念。这些概念是对具体的数和形的感知而形成的表象,然后再由表象经过抽象、概括而形成的。例如:正方形的面积S和它的边长a之间的关系是S=a,边长a可在a>0的范围内任意选取,对于a的每一个确定的值,其面积S都有一个确定的值与它相对应。若抛开这个个性的关系,抽出共性的东西,并加以概括,就可以得到函数的概念:“在某个变化过程中有两个变量x和y,若对于x在某一范围内的任一个取值,y都有惟一一个确定的值与它相对应,那么,我们就把y称之为x的函数。”由此可知,概念是人们对感性材料进行抽象的产物;感性认识是形成概念的基础。如果学生没有感性认识或感性认识不完备时,我们就应该借助于实物、模型、教具、图形或形象的语言进行较为直观的教学,从而使学生从中获得感性认识。对于一些概念(属概念),教师可以直接从已知的概念(种概念)中引入,不必再经过取得感性认识的阶段。如有理数的概念,就可以直接从整数、分数的概念中引入。
其他文献
本文通过对荣华二采区10
期刊
2003年4月,教育部新颁发的《普通高中数学课程标准(实验)》正式出版发行。是一部规划我国新世纪高中数学教育发展蓝图的纲领性文献,从课程理念,到课程框架,到课程内容,无一不渗透一股浓郁的时代气息。《新课标》的实施,既是数学教育改革的大胆举措,适应时代要求,适应社会要求,也是对中学数学教师——数学教育一线工作者的一次重大挑战。在新情况下,数学教师应该根据《新课标》的要求,在实践中不断提高自身的教学意
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
内容摘要:语言发展过程中,幼儿时期是非常重要的时期,因此幼儿语言工作者要充分认识到这项工作的重要性,把握好这一时期,在提升自身能力的同时发挥出语言的魅力,全面开展幼儿语言教育。本篇文章针对幼儿普通话教育进行详细地分析,分析了在普通话教育过程中方言的具体应用。同时笔者结合自身教育经验,针对语言教育工作提出了一些建议和意见,希望能够对现实生活中的幼儿语言教育起到一定的作用。  关健词:幼儿普通话教育
摘要:解决问题是将生活融入数学,提高了数学应用能力,提高了兴趣,从反面来说,也是将数学融于生活,使得生活更加简单化。本文从解决问题的概念和教育价值出发,发现其教学中存在的问题,并针对学生的问题提出了相关解决措施。  关键词: 小学数学;解决问题;教学研究  一、解决问题的概念及其教育价值  “解决问题”指的在需要达到某种目的的时候可以通过思考,找到有效途径去实现目标;从狭义上来说,解决问题就是将自
内容摘要:汉语言文学作为一个有着悠久历史的传统学科,是其他学科教学的基础,通过对汉语言文学教育历史进行回顾,指出汉语言文学教学在教学方法、教学内容、教学技巧方面存在的诸多问题,并提出了相应的创新策略,以提高目前的办学水平和教学质量。  关键词:汉语言文学 教学方法 教学创新  一.汉语言文学教育中存在的问题  由于招生质量、师资力量、社会风气及学科本身的问题,汉语言文学教育水平不容乐观。如今,选择
摘要:研究性学习在小学数学中的应用着重点在于小学生对于知识的再创造过程,本文从小学数学学科特点出发,提出了几种研究性学习的教学策略,希望促使小学数学与研究性学习紧密结合,并试图为小学数学教师培养小学生创造性提供可借鉴的操作策略。  关键词:小学数学;研究性学习;教学策略  一、在小学数学中开展研究性学习的必要性  布鲁纳认为,“所谓学科的教学,不是灌输作为结果的知识,而是指导儿童参与形成知识的过程
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
高职院校培养的毕业生是企业一线的工作人员。企业需要什么样的员工,高职院校就需要培养什么样的员工。为满足企业的需求,从培养方式、课程体系建设、师资队伍建设方面,提出
日本女性的社会地位在长期的历史变化中经历了两个重要转折点:明治维新和第二次世界大战,社会变化的发生必定是人们的社会地位和意识形态的变化。那么,本文就这两个转折点来分析日本女性的社会地位和就业意识的变化。  明治维新以前,日本的女性完全是男性的随从者成为社会的地位,几乎没有,农业一样的社会最底层的职业从事只能。幸运的是,那个时候传教士引进了基督教世界的男女平等的思想。  明治政府在1889年明治民法