巧用参数分离法解曲线系过定点问题

来源 :数学教学通讯(教师阅读) | 被引量 : 0次 | 上传用户:working_man_1986
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  平面解析几何中的定值问题是指按照一定条件构成的几何图形或数量关系,当某些元素在一定范围内变化时,与它有关的量保持不变数值的一类问题。在定值问题中,其中一类是判定或证明平面曲线系过定点的问题。解决此类问题的方法很多,限于篇幅,下面只介绍用“参数分离法”解决曲线系过定点的问题。
其他文献
土壤污染问题一直以来都是我国以及国际社会所面临的重大环境问题。当前我国缺乏专门的、系统的、操作性强的土壤污染防治立法,有关土壤污染的治理举措也只是散见于与环境保
特殊化思想是一种重要的数学思想,也是一种辩证的认知规律,历史上一些重大的科学发现,时常是由特殊引发的.在解答数学问题时,特殊化方法,常常表现为将一般问题特殊化处理或从特殊出发探索解题方向,以获得问题的解决,它是一种以“退”为“进”的解题策略.著名数学家华罗庚认为,善于“退”, 一直“退”到原始而不失重要性的地方,是学习数学的一个诀窍.其实质就是特殊化归,那么特殊思想有那些解题功能呢?具体体现在如下
倡导积极主动,勇于探索的学习方式,是高中新课标的基本理念之一.它要求“高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创
目前,全国高考试题中每年都设计了联系生产与生活实际的数学应用题,并且已经成为高考试题中的一种重点题型,从1994年开始,全国高考数学题中,每年均考数学应用题,从而已引起老师与学生的广泛关注与高度重视.纵观这些题目的实际背景、数学化程度、文字表述等都比较新颖,其目的在于培养考生把实际问题抽象成数学问题的能力,逐步把数学知识应用到生产、生活实际中,形成应用数学的意识.要提高学生解答数学应用题的能力,笔
1 折——折叠,平面问题空间化    例1 (2005年浙江文理12题)设M、N为直角梯形ABCD两腰的中点,DE⊥AB于E(如图1),现将△ADE沿DE折起,使两面角A—DE—B为45°,此时点A在平面BCDE内的射影恰为点B,则MN连线与AE所成角的大小为( )