论文部分内容阅读
考虑如下二阶非线性奇异两点边值问题{-u″ + f(u)-u-γ =λu,0 < x < 1,u>0,u(0) =u(1) =0,其中0<γ<1为常数,λ>0为特征值参数.f(u)满足给定的条件.利用上下解方法和Arzela-Ascoli定理讨论二阶非线性奇异两点边值问题正解的存在性和唯一性.特别地,利用适当的变换和最大值原理给出方程在特殊形式下正解的渐近行为.