双权相关论文
在这篇文章中,我们首先证明了微分形式的局部和全局的A(Ω)双权嵌入定理.然后,又得到了微分形式的双权的Poincaré不等式.这些不等......
在这篇文章中,我们首先给出了Aλ3r(λ1,λ2,Ω)权的定义.然后在此基础上借助Holder不等式和前人研究的结果分别得到了A-调和张量的局......
本文主要研究齐次A-调和方程与共轭A-调和方程的解的性质.在回顾了有关A-调和方程的解的基本概念与主要结论的基础上,证明了关于A-......
本文首先引入一种新的双权--Arλ3(λ1,λ2,Ω),然后证明了流形上的非齐次A-调和方程的Green算子的双权Poincare不等式。最后,我们将这......
学位
首先定义了Aλ3r(λ1,λ2,Ω)-权,进而得到微分形式的双权Poincaré不等式.最后,给出上述结论在拟正则映射中的应用.......
期刊
研究形如div A(x,(△)μ(x))=0的A-调和方程,证明了其弱解满足局部Aξ双双Caccioppoli型不等式.其中算子A:Ω×Rn→Rn满足如下条件......
该文证明了满足A-调和方程的微分形式的局部双权积分不等式,作为局部结果的应用,还证明了满足A-调和方程的微分形式的整体双权积分不......
推导A-调和方程d*A(x,dω)=0解的局部Arλ(Ω)双权弱逆Hlder不等式,其x∈Ω,a.e,对任意ξ∈Λl(Rn),算子A:Ω×Λl(Rn)→Λl(Rn)满足条件......
本文证明了可测度量空间中Hardy-Littlewood极大算子的双权Lp有界性....