FOURIER拟谱格式相关论文
Cahn-Hilliard方程是一个反映一种易熔合的化学混合物成二元合金,然后再被聚冷而成的一种不稳定状态,继而分解为性质截然不同的两......
一切耗散效应可以忽略不计的物理过程都可表示成能够保持辛几何结构不变的哈密尔顿系统的形式,它在自然界中具有普适性,也就是说大......
对非线性Pochhammer-Chree方程作正则变换,得到它的一个多辛方程组,并用多辛Fourier拟谱方法离散此方程组,得到了非线性Pochhammer-Ch......
基于Hamilton空间体系下的多辛理论,提出组合KdV-mKdV方程的一个多辛方程组.通过离散此方程组,得到原方程的一个多辛Fourier拟谱格......
在空间方向用Fourier拟谱方法离散非线性“good” Boussinesq方程,然后在时间方向用中点辛格式对半离散方程进行数值求解,得到了非......
通过对SRLW方程作正则变换,得到了它的一个正则方程组.构造了它的多辛Fourier拟谱格式.数值实验表明它具有长时间的数值稳定性,能很好......
对满足周期边界条件的非线性“good”Boussinesq方程作正则变换,得到它的一个多辛方程组及其守恒律.在空间方向用Fourier拟谱方法离......
Cahn-Hilliard方程是多年来被广泛关注的热点问题,也以各种方法给出了该方程解的存在性和唯一性等.但在该方程的拟谱逼近中,一般都对......
基于Bridges原理,得到了1+1维Dirac方程的多辛哈密尔顿系统形式及局部守恒律.空间方向采用Fourier拟谱格式,时间方向为中点辛格式,......
基于Bridges和Reich原理,得到了梁的振动问题的多辛哈密顿形式及局部能量和动量守恒律.利用Fourier拟谱格式对空间方向离散,中点辛......
通过引进正则动量,将对称正则长波方程(简称SRLW方程)转化成多辛形式的方程组,它具有多辛守恒律;介绍了空间方向满足周期边界条件的函数......
对满足周期边界条件的Camassa—Holm(CH)方程,基于其多辛方程组的形式,空间方向用Fourier拟谱方法,时间方向用中点隐式辛格式进行离散,得......