参数阵列相关论文
设K是域,V是域K上的有限维向量空间.三对角对是指V到V的一个有序K-线性变换对A,A*,并且满足如下四点:(1)A,A*均可对角化;(2)存在A的一......
令F是域,d是非负整数,V是域F上的维数为d+1的有限维向量空间,Matd+1(F)是d+1阶全矩阵代数。A是表示一个与Matd+1(F)同构的代数, ......
三对角对的概念起源于代数图论中的Q-多项式距离正则图理论.1999年Bannai和Ito在文献[1]中给出了这一概念,并进行了系统的研究.涉......
Terwilliger代数表示指的是三对角对,Leonard对,海森伯格对等线性变换有序对,它是代数组合理论中研究距离正则图的重要代数方法.
......
设K是一个特征为零的代数闭域,V是域K上有限维非零向量空间.所谓V上的一个勒纳德对是指由End(V)中的两个线性变换A和A*构成的有序对......
学位
设K是特征为零的代数闭域.设V是域K上有限维非零向量空间.所谓V上的一个勒纳德三元组是指End(V)中三个有序的线性变换A,A*,Aε,且满足......
本文讨论Z2×Z2在全体海森伯格系统所组成的集合上的一个群作用,研究尖锐的海森伯格系统的同构和仿射变换同构,并计算尖锐的海森......