可能性c-均值聚类相关论文
应用聚类方法对合成孔径雷达(SAR)图像进行分割时,受SAR图像斑点噪声的影响,在聚类过程中应当既要考虑聚类原型的空间自适应性,又......
提出一种新的结合了模糊c-均值聚类(FCM)算法和可能性c-均值聚类(PCM)算法优点的联合模糊c-均值聚类(AFCM)算法。它克服了PCM对初始值敏......
基于支持向量数据描述和改进的可能性c-均值聚类算法,提出了一种模糊的多类分类学习机。首先通过一个改进的PCM算法来计算每个样本......
模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始类中心非常敏感易导致一致性聚类.可能性模糊C-均值聚类(PFCM)综合了F......
截集式可能性C-均值聚类算法通过引入截集门限,修改典型性值,克服了可能性C-均值聚类算法的最关键问题:一致性聚类。针对算法中截......
模糊集理论是处理不确定性、不精确性问题的有效工具。模糊划分以及相关理论是模糊集基础理论研究的一个重要方面。而传统模糊划分......
聚类分析是用数学方法来研究分类问题的一门学科,是统计模式识别中非监督模式分类的一个重要分支,近二十年来得到了迅猛的发展。模糊......
可能性模糊聚类算法解决了噪音敏感和一致性聚类问题,但算法假定每个待分析样本对聚类的贡献相同,导致离群点或噪声点对算法的干扰......