奇异非线性方程组相关论文
Levenberg-Marquardt方法是求解非线性方程组的一种重要方法,L-M方法中正参数的引入一方面克服了导数矩阵奇异或靠近奇异时所带来......
本文主要研究了求解非线性方程组奇异问题的Levenberg-Marquardt方法。我们选取Levenberg-Marquardt参数为当前迭代点处函数值的模......
本文研究了求解奇异非线性方程组的新的Levenberg-Marquardt方法及其收敛性。 非线性方程组问题和非线性最小二乘问题在最优化......
在Lipschitz条件下,建立了为求奇异非线性方程组的解的Newton法收敛的判别条件.同时也给出了Newton法收敛球的半径的估计.......
Banach空间中的非线性算子方程F(y)=0的求解是计算数学的理论基础,也是现代科学计算的核心问题之一.求解方程的算法比较重要的有Euler......
对一类奇异非线性方程组,运用Moore-Penrose广义逆建立牛顿迭代法,分析了其局部收敛性、半局部收敛性以及收敛半径的估计,数值例子......
我们提出一个新的求解奇异非线性方程组F(x) = 0的修正Levenberg-Marquardt算法,其中Levenberg-Marquardt参数为||Fk||δ,δ∈(0, 2]......
本文主要探讨了求解非线性方程组奇异问题和非线性不等式组的Levenberg-Marquardt方法及其应用.非线性方程组问题广泛应用于工程、......
给出了一种基于三角进化算法(TE)的求解奇异非线性方程组的方法.将方程组的求解问题先转化为无约束函数优化问题,而后利用种群并行......
对运用M-P逆建立的Newton迭代法做近似,构造不精确的算法.取Newton方程组的最小二乘解的近似解推导构造不精确的算法,结果可得到不......
在文献[1]的基础上,结合信赖域技术和Levenberg-Marquardt方法求解非线性方程组的特点,提出了一种求解奇异非线性方程组的修正的Le......
基于信赖域技巧,给出了求解非线性方程组奇异问题的一个新的修正Levenberg-Marquardt方法.在弱于非奇异条件的局部误差界条件下,证......